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Reprints from The Early Days of Information
Sciences

Historical studies about a scientific discipline is a sign of its matu-
rity. When properly understood and carried out, this kind of studies are
more than enumeration of facts or giving credit to particular important
researchers. It is more discovering and tracing the way of thinking that
have lead to important discoveries. In this respect, it is interesting and also
important to recall publications where for the first time some important
concepts, theories, methods, and algorithms have been introduced.

In every branch of science there are some important results published in
national or local journals or other publications that have not been widely
distributed for different reasons, due to which they often remain unknown
to the research community and therefore are rarely referenced. Sometimes
the importance of such discoveries is overlooked or underestimated even by
the inventors themselves. Such inventions are often re-discovered long after,
but their initial sources may remain almost forgotten, and mostly remain
sporadically recalled and mentioned within quite limited circles of experts.
This is especially often the case with publications in other languages than
the English language which is presently the most common language in the
scientific world.

This series of publications is aimed at reprinting and, when appropriate,
also translating some less known or almost forgotten, but important publi-
cations, where some concepts, methods or algorithms have been discussed
for the first time or introduced independently on other related works.

Another aim of Reprints is to collect and present at the same place
publications on certain particular subject of an important scholar whose
scientific work is signified by contributions to different areas of sciences.

R.S. Stankovié, J.T. Astola
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Early Work of Aimo Tietavainen

Abstract

The present issue of Reprints from the Early Days of Information
Sciences discusses research work of Aimo Tietdvdinen. It presents 17
papers by Aimo Tietdvainen, and highlights the impact of this work to
the research at the time in this area.
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ESIPUHE

Monet tieteelliset edistysaskeleet tai lapimurrot ovat syntyneet yhdistamalla
kahden eri tutkimusalueen metodeja ja ehképéa luonnollisin tapa tehda tallai-
nen tutkimusalueiden véalinen harppaus on se, ettéd tutkija siirtyy joko koko-
naan tai osittain toimimaan uudella tutkimusalueella. Kaikki tutkijat tekevat
tatd jossain méaarin siirtyessadn uusiin tutkimusongelmiin ja jotkut jopa
toimivat useilla ndennaisesti hyvin erilaisilla aloilla. Yleensd naita aloja
kuitenkin yhdistad vaikkapa se, etta probleemien mallinnus perustuu samaan
matematiikan alaan. N&in on my0s Aimo Tietavéisen tutkimuksissa. Han
aloitti matematiikan opinnot Turun yliopistossa 1950 luvun puolivélissa ja
vaitteli yhtéloiden ratkeavuudesta adrellisissa kunnissa v. 1965.

Voi sanoa, ettd ensimmaiset kymmenen tutkimustyo vuotta kuluivat
lukuteorian ja nimenomaan &arellisten kuntien teorian parissa. Samaan
aikaan eli tietoliikenne ja informaatioteoriaan kuuluva virheitd korjaavien
koodien teoria kiivasta kehitysvaihetta ja monilla koodausteorian ongelmilla
oli yhteys aarallisten kuntien teoriaan. Néin oli myos kysymyksella taydellis-
ten koodien olemassaolosta. Sité pidettiin merkittdvana ongelmana ja otak-
suttiin, ettd tuntemattomia taydellisid koodeja ei ole, mutta oli onnistuttu
todistamaan vain muutamia erikoistapauksia. Vuonna 1971 Tietdvainen os-
oitti, etta ei ole tuntemattomia binaarisia taydellisid koodeja ja vuonna 1973
lehdessa SIAM J. Appl. Math. ilmestyneessa artikkelissa hén todisti, etta ei
ole tuntemattomia taydellisid koodeja yli minkaén darellisen kunnan. Tulos
heratti suurta huomiota ja sitad pidetaén yhtena koodausteorian tutkimuksen
kulmakivistd. Myohemmin Tietdvainen on julkaissut monia muita syvallisia
tuloksia koodausteorian ja lukuteorian alalta.

Tieteellisten lehtien maara ja levikki oli tuohon aikaan paljon vahaisempi
ja tutkijat julkaisivat tuloksiaan padosin kansallisissa ja yliopistojensa sar-
joissa. Tulokset toki levisivat nopeastikin suoraan tutkijoiden keskinaisen
kirjeenvaihdon kautta seké referaattilehtien kautta, mutta vain saman alan
tutkijoiden piirissad. Né&in esimerkiksi Tietaviisen kansallisissa sarjoissa julka-
istut varhaisemmat tulokset ovat vaikeasti saatavissa. Tahéan reprint kokoel-
maan onkin koottu hénen varhaisia julkaisujaan lukuteorian alalta sekd myos
ensimmaiset koodausteorian tyot.

Itse tutustuin Professori Tietdvéaiseen, kun aloitin matematiikan opin-
not syksylla 1968 ja seurasin matemaattisen analyysin peruskurssia, jota
hén luennoi. Han oli tavattoman pidetty ja kunnioitettu opettaja. Hénen
luentonsa olivat erittdin hyvin suunniteltuja ja valmisteltuja, ja koko sali
seurasi aina luentoa herkeamatta. Luennot oli my0s hoystetty pienilla an-
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noksilla mainiota kuivaa huumoria seka hyodyllisid opiskelua koskevia neu-
voja ja ohjeita. Opiskelijoiden kunnioitusta kuvastaa sekin, ettd kun hén oli
ollut vuoden poissa Turusta, niin hinen tullessa luentosaliin ensimmaéiselle
luennolle opiskelijat nousivat spontaanisti seisomaan vaikka ajat olivat jo
muuttuneet eiké tallainen enéa ollut tapana.

Jatkoin opintoja hanen ohjauksessaan. Viitoskirjatyon ohjaajana hén oli
vaativa, mutta kannusti itsenéiseen ajatteluun ja oli aina valmis keskustelui-
hin ja tarjoamaan ideoita kun opiskelijalla oli vaikeuksia paédsta eteenpain.

Tietavainen perusti Turkuun koodausteorian koulukunnan ja hénet tun-
netaan ehké parhaiten taydellisten koodien probleeman ratkaisusta. Kysyin
kerran héneltd mika hénen toisen padalueensa tulos on hanen omasta mieles
tdan mielenkiintoinen tai jannittava. H&n sanoi, ettd esimerkiksi J. H. H.
Chalkin Vinogradov-Mordell-Tietavéinen epayhtaloiksi kutsumat tulokset
ovat yllattavia ja niiden todistukset ovat lyhyita.

Jaakko Astola
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Foreword

Many scientific advances or breakthroughs have been obtained by combining
methods from two or more different research fields and perhaps the most
natural way to make this kind of leap over the barriers between fields is
that the researcher moves partially or completely to a new field. Actually,
all researchers do this to some extent when they move to new problems,
but some work simultaneously in seemingly very different fields. Typically,
there is some underlying theme joining the fields, for instance, the field of
mathematics that is used in modeling the problems. This is the case also
in the research work of Professor Aimo Tietdvainen, where the underlying
theme is number theory that is also called the Queen of Mathematics. He
began his career by studying mathematics at University of Turku in middle
1950’s and wrote his PhD thesis on the solvability equations over finite fields
in 1965. His first ten years in research concentrated on number theory and
especially on the theory of finite fields. At the same time the research in
coding theory, a part of information theory, was rapidly expanding and many
problems in coding theory are connected to finite fields. This is also the case
with the famous conjecture of nonexistence of perfect codes over finite fields
of which only isolated cases had been proved. In 1971, Tietdvainen proved
that there are no unknown perfect codes over the binary field, which is
the most important case. Soon after that, in an article that appeared in
SIAM J. Appl. Math. in 1973, he proved the celebrated result that there
are no unknown perfect codes over any finite fields, which is considered a
cornerstone of the theory of error correcting codes.

At that time scientific and mathematical journals did not have as wide
circulation as nowadays and many researchers published mainly in national
publication series or in the publication series of their local university. The
results spread quite quickly, nevertheless, via the correspondence between
researchers, but mostly only between the researchers within the same field.
Thus, for instance, the early works of Tietdvainen that were published in
national series are not easy to get and, consequently, we have collected to
this volume of reprints his early works on number theory as well as his key
papers on perfect codes that reflect his movement to the new research field
of coding theory.

I first met professor Tietdvainen when I began my studies of mathe-
matics in fall 1968 by following the first course in mathematical analysis
that he lectured. He was a highly liked and respected teacher. His lectures
were superbly designed and prepared, and always the full room was keenly
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following the lecture.

Mathematics Department had moved to a new building that had good
lecture rooms with several pairs of blackboards that could be moved up and
down. He started from the left upper board and usually at the end of the
second hour of the lecture he put period in the right lower corner of the
last board. He always managed to keep the theorems and key points of the
proofs visible throughout the lecture so that a student could catch up with
the reasoning of difficult parts. His lectures were supplemented with small
doses of excellent dry humor as well as very useful hints and guidelines for
studies.

I remember something that well describes the respect that the students
held for him. When he returned to Turku after spending a year in another
university and came to his first lecture, all the students spontaneously rose
although this had not been the custom for a decade or so.

I continued my studies towards PhD under his guidance. As an advisor
he was demanding but encouraged independent thinking, and he was also
always ready to discuss and offer ideas when a student was stuck with a
problem.

Tietavainen founded Turku group of coding theory that is well known
around the world. Among coding theorists he is best known for his proof of
the nonexistence of perfect codes. I once asked him about his other field,
number theory, what he considers to be the result he has found most pleas-
ing or interesting. He answered that perhaps the results that J. H. H. Chalk
calls Vinogradov-Mordell-Tietavainen inequalities are such because the re-
sults are surprising while their proofs are short.

Jaakko Astola
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A digital portrait of Aimo Tietdvéinen by the artist Juhani Haaparinne reprinted by the
courtesy of its author.
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PREFACE

This collection of mathematical papers is dedicated to
Aimo Tiet8viinen on the occasion of his 50th birthday

on July &, 1987. The contributors, with the exception

of one coauthor, are either his colleagues or former
students from the Mathematics Department of the University
of Turku. Many of the contributions deal with the theory

of error-correcting codes.

Aimo Tiet8viinen is a professor at the University of

Turku, where he has initiated an internationally wellknown
school of coding theorists. A scholar in the theory of
finite fields, Tietdviinen became a coding theorist after
solving the celebrated open problem concerning the
characterization of perfect codes. He has given invited
lectures at many international conferences. His more recent
work includes papers on number theory, bounds and covering

problems for codes, and character sums.

Tietdvdinen is an enthusiastic and encouraging teacher.
His colleagues appreciate his calm personality, as well as
his expertise in various academic matters. In fact, his
family name means "a knowledgeable person.'" The first name
Aimo stands for "substantial" or "in a high degree." By
these remarks, also foreigners should be able to decrypt
the rather unusual title of this volume!

The editors gratefully acknowledge the financial support
from the Foundation of the University of Turku. Thanks
are due also to the authors of the papers for good
cooperation, as well as to Martti Penttonen for the
photograph.

Turku, Hay 1987

Hannu Laakso Arto Salomaa
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1 Reprints

The following table lists journals where Professor Aimo Tietavainen used to
publish in 1964 to 1974. The numbers in parentheses show the number of
publications in a particular year.

Journal Year of publishing

Ann. Univ. Turku. 1964, 1966 (2), 1967 (2),
1968 (2), 1969, 1971, 1974

Ann. Acad. Sci. Fenn. 1965 (2), 1966, 1970, 1973

J. Number Theory 1971, 1975

SIAM J. Appl. Math. 1973

Aimo Tietavéinen defended his PhD thesis in 1965 at the University
of Turku, Turku, Finland, with the subject On the Non-Trivial Solvability
of Some Equations and Systems of Equations in Finite Fields and under
supervision of Professor Kustaa Inkeri. The thesis was published as the
Paper 2 in the enumeration of papers reprinted in this book.

1.

Paper 1
”On the non-trivial solvability of some systems of equations in finite
fields”, Ann. Univ. Turku., A 171 (1964) 1-5.

Paper 2
”On the non-trivial solvability of some equations and systems of equa-
tions in finite fields”, Ann. Acad. Sci. Fenn., A 1360 (1965) 1-38.

Paper 3
”0On systems of linear and quadratic equations in finite fields”, Ann.
Acad. Sci. Fenn., A 1382 (1965) 1-5.

Paper 4
”On systems of equations in finite fields”, Ann. Acad. Sci. Fenn., A
1386 (1966) 1-10.

Paper 5
”On the trace of a polynomial over a finite field”, Ann. Univ. Turku.,
A T 87 (1966) 1-7.

Paper 6
”On non-residues of a polynomial”, Ann. Univ. Turku., A 194 (1966)
1-6.

XXX



10.

11.

12.

13.

14.

15.

16.
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On the non-trivial “solvability of some systems of equations
in finite fields

Let K = GF(q) be a finite field of ¢ elements where ¢ = p*, p is a prime
and n a positive integer. We consider the system

(IJ Z{&[;I;” =0 (i=1,...,t), aij € K,
i=1

and its special cases

(2) zﬂ'ijr :‘ == (i = 1! v !t)! hij € K;
Jj=1

(3) Dayz; =0 (i=1...,t), a; €K,
j:‘.l.

and

(4) Za;xj =0,a; € K.
j=1

Here the c-numbers are positive integers.

DerINiTION 1. The system (1) is correlated if the following condition is
valid: If i, and 1, are two of the integers 1,. .., 1, then either ci; = ci;, for
every j=1,...,8, or ¢ijFciy, for every j=1,...,s The system (1) is
strongly correlated if the ai;’s are non-zero elements of K and ci ;7 ci
when 4, 1., for every j =1,...,8

DeriNirioN 2, The system (1) is Chowla’s system (cf. |3], [4]) if, for
every j=1,...,s, there is an element h; of K such that h:”= —1, for
every it =1,...,L

Clearly, the system (2) is correlated. Furthermore, the system (1) is
Chowla’s system at least in the case where the ¢;;’s are odd.

By using the well-known result of CarriTz and Ucnivama [1] and an
extension of a method of Cnowra [4], we can prove the following theorems
which are generalizations of some theorems of Crowra ([3], [4], ef. also [2]).

TureoreM L. The strongly correlated Chowla’s system (1) has a non-
trivial solution in K if 2=c¢; = m?.xc;,__‘ip——l, for every j=1,...,s,

)

max ¢i; = 3 and

Qs(s-2t) == fl {C;——l)“,
i=1
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TueoreEM II. The correlated Chowla’s system (1) has a non-trivial
solution in K if 3=c¢ = maxc;; =p—1 and

$=2{(t+ log.(c—1)).

Tueorem III. Chowla’s system (3) has a non-trivial solution in K if
d= (¢,q—1) =3 and g
8= 2i(1+ log.(d—1)).

In the proof of theorem III we do not use the deep result of CarLITZ
and Ucnivama. The conditions 2 = ¢;, maxe¢i; =3 and d = 3 are unessential
because the cases excluded by them are easy to handle.

DeriNiTION 3. P(c,t) is the least integer s such that the system (3)
has a non-trivial solution in every finite field K, for every matriz (a;;).
Especially, we denote P(c,1) = P(c).

We suppose that € is an odd integer = 3. Furthermore, we denote by {a}
the least integer = a. Then the subsequent corollaries are implied by theorem
1603

CoroLLARY 1. P(C,t) =21* + {2tlog,(C—1)}.

CoroLLARY 2. P(C) =2+ {2log.(C—1)}.

On the other hand, there is an infinity of C’s such that P(C) =1+
log.(C +1).

It is rather easy to prove the following

LemMma, If s=3 and

A, 8/8-2
g =3 s1) , .
where d = (¢,q—1), then Chowla’s equation (4) has a non-trivial solution
mn K.

GrAY [5] has shown that P(5) = 4. By means of the lemma above, we
can show by a very simple numerieal caleulation that P(7) = 4, P(9) = 5.
Using the lemma, we obtain also an improvement of corollary 2.

The proofs of the results presented above will be published in the near
future.
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§ 1. Introduection

l. let K = GF(q) be a finite field of ¢ elements where ¢ = ",
P is a prime and # a positive integer. Consider the equation

(1) Zn§=0, yeK

where ¢ is a positive integer. Let P(c) be the least integer s such that the
equation (1) has a non-trivial solution (&, ,...,¢&) in every finite field K,
for all the y;'s. Let P’(c) be the corresponding integer when K runs
through all the prime fields only. Clearly P’(c) = P(c).

It is well known [4] that P(e) = ¢ 4 1. We know also that there is an
infinity of ¢’s such that P(c) = P'(¢c) = ¢ + 1. Indeed, the equation

has only the trivial solution in GF(p) when p is a prime. On the other
hand, it is obvious that this upper bound for P(c) can be improved if the
values of ¢ or g are restricted by some further conditions.

The equation (1) is said to be an A-equation if —1 is a cth power in K
and so, in particular, if ¢ is odd. We denote by P,(c) the least integer s
such that the equation (1) has a non-trivial solution in every finite field K
in which —1 is a eth power, for all the y;’s. Pj(c) is defined correspondingly.
Then clearly Pj(c) = P,(c). Furthermore, P,(c) = P(c) and P}(c) = P'(c)
if ¢ is odd.

Moreover, we denote by [z] the largest integer = 2 and by {z} the
least integer = z, for every real z. Then we can present the subsequent
known results in the following form.

1) Lewis [17]: P(3) = 3.

2) GRAY [14]: P(c) =c — 1 when ¢ is a prime and = 5.

3) Gray [15]: If ¢ is an odd prime then P(c) < ¢ + 4 — [2(c + 2)!).

4) CHOWLA [5]: There exists an absolute positive constant k such that
Pic) = klogc when ¢ is large enough.

5) Coowra [6]: Let & denote an arbitrary positive number. Then
there exists a ¢y = co(e) such that if ¢ is an odd prime and > ¢, then
P'lc) = (2 + &) log, c.

15
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6) CrowrA and SHIMURA [11]: Resuli 5) withoul the restriction ¢ is a
prime.

Let us consider the general system
(2) &, 8)=0 (=1,...,9

where the f’s are non-zero polynomials with coefficients in K and
f0,...,0)=0, for every i. CHEVALLEY [4] obtained the following
result.

The system (2) has a non-trivial solution in K if

s =14 > o

=

where c¢; 1is the degree of f..
2. In the present paper we consider the system

3 3 ij el .=l,...,‘
(3) -‘;l(fﬂ (¢ )

where f;; is a polynomial of degree ¢y over K (the degree of 0 is defined
as —oo) and f;(0) = 0, forevery ¢ and j. Furthermore, we may assume
that, for any j, f;,...,f; do not satisfy identically the equations
fii§) = ... = [;(§) = 0, for otherwise the system (3) has the non-trivial
solution § =1, § = 0(k # j) in K. We often restrict our investigation
to those systems (3) which satisfy the following condition.

Condition A. For every j—= 1,...,8 there exist non-zero elemenis 7
and CJ Of K such that ;q{qj)=_.fq{ﬁj)! forw i=lr“‘rt'

A system is said to ba an A-system if it satisfies condition A. This is
clearly an extension of the definition of the A-equation (1). The system (3)
is an A-system at least in the case where the degrees of the terms of the f;’s
are odd. Indeed, we can then take # =1, ;= —1, for every j. In
addition, all the systems (3) are A-systems in the fields of characteristic 2.

In some theorems we must assume that the system (3) satisfies also the
following condition.

Condition B. For any value of j no non-zero linear combination of the
polynomials  fy;, ..., [f; over K can be wrillen in the form gF — g + f
where g s a polynomial over K and f is an element of K.

A system is called a B-system if it satisfies both conditions A and B.
It should be noted that condition B is satisfied at least in the case where
ey = p— 1, forevery ¢ and j. We may define two polynomials f and ¢

16
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as equivalent if f(£) = g(§), for every element & of K. Since every
element of K is a root of the equation & = &, every polynomial fj; is
equivalent to a unique (reduced) polynomial in which every exponent is
< ¢ — 1. Therefore condition B is no restriction in prime fields.

By using a well-known result of Carvirz and Uchryama [3] and an
extension of a method of CHOWLA (see, for example, [7]), we prove in § 3
that the B-system (3) has a non-trivial solution in K if

s =24t + 0)

where € = max (logy (¢ = 1), 1) and ¢ = maxecy (here and hereafter
log 0 is defined as — cc). For ¢ small compared with ¢ this theorem gives
better results than that of CHEVALLEY.

We state for the system (3) also the following

Condition C. 7The (reduced) polynomials | ,...,f[; are linearly
independent over K, for every j.

The system (3) is said to be a C-system if it satisfies all the conditions
A, B, and C. For example, the system

2;?‘131-—1:0 {i:l..--u”

is a C-system if the y;'s are non-zero elements of K and 2¢ — 1 is < the
characteristic p of K. In § 4 we show that the C-system (3) has a non-
trivial solution in K if

s=241+0).

In § 4 we consider also some systems for which conditions B and C are un-
necessary and we show among other things that the A-system

) ,Z‘l?uﬁzﬂ G=1,...,8, wwe€K
J-
has a non-trivial solution in K if
8 =24t + D)

where D = max (logy (d — 1), 1) and d is the g.c.d. of ¢ and ¢ — 1.
In the proof of this result we do not use the deep result of Carrirz and
Ucnivama. We now have the inequality

Pule, ) < 22 4 {21C)

17
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where P,(c,t) is the extension of P,(¢) for systems of ¢ equations (for a
more precise definition of P,(e, t), see section 11). Hence in particular

(5) . Pye) S 2+{20}.

In some special fields we can improve the results concerning the system (4)
(see theorems 5 and 6).

In § 5 we consider briefly for later use sumsets of subsets of K, using the
terminology of LEwis [18]. In § 6 we show (theorem 7) that the A-equation
(1) has a non-trivial solution in K if

g = s 'd(d — 1)"e-?

where d is the g.e.d.of ¢ and g — 1 and s = 3. Using theorem 7 and
Crowra’s method, we obtain an improvement of the estimate (5) (see
theorem 9). In particular, we have

P(e) < 2logye

when ¢ is large enough. On the other hand, by theorem 10, there is an
infinity of odd ¢'s such that

P(e) 2 1 + {logg (¢ + 1)} .

We announced this result for P(c) in [22]. It has been established also in
the papers [9] and [11] of CHOWLA and SHIMURA which came to our notice
later. It follows immediately from theorem 10 that there is an infinity of
odd ¢’s such that

Pllc,t) =1 + t{log, (¢ + 1)},

for every positive integer ¢

By means of theorem 7, we get an upper bound, which is rather good for
small ¢’s, for the ¢'s for which there exists at least one A-equation (1) with
the trivial solution only. Therefore P,(c) and Pl(c) can be obtained, for
small values of ¢, by a very simple numerical caleulation, In § 7 we calculate
as an example the values of P(¢) and P’(¢) when ¢ is odd and = 11,
The cases ¢ = 3 and ¢ = 5 were handled by Lewis and Gray. Our method
is, however, completely different from theirs, In § 7 we calculate the values
of Py(c) and Py(c) also for even ¢ < 8.

In § 8 we establish a result about the lower bound for the maximum
moduli of a trigonometric sum. Finally, we state some conjectures about
Pyle, ).

It should be noted that we announced in [22] many of the results
presented above.

18
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§ 2. Preliminary results

3. Let V be the space of t-tuples over K. Let a = (x,...,x) and
b= (By,...,H) beelements of V and x and p elements of K. Define,
as usual, the sum of a and b as

(8) a+b=(“1+ﬁj:-.-vac+ﬁl)!
the product of x and a as

ol = (a0, ..., 0%),
and the scalar product of a and b as
(7) ab=wxp, + ...+ ab.
The 0-element (0,...,0) of V will be denoted by 0.

Define the trace of x as
1

tr(a) = +aP + ... +af
so that tr(:x)l is an integer (mod p). Define, furthermore,
e(x) = vl
It follows from this that
e(x + p) = e(x) e(B)
which implies, by (6) and (7),
(8) e(l(a + b)) = e(la) e(lb) ,

for every element 1 of V.

Hereafter, in the sums of type »' and »' the summation is over all
=0

the elements of K and over all the non-zero elements of K, respectively.
Moreover, in the sums of type > and 3 the variable runs through all the

. aro
elements of V and through all the non-zero elements of ¥, respectively.
r We have
g if p=0,
- (9) elaf) =
é: A 0 if B=£0.
Furthermore
' i
e(ab) = e(‘zl ouﬂ;) = ;n: e(oifs) .
Therefore [

19
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¢ if b=0,

10 N b iy
(10) ;8(3) Hgﬂ(mﬁ} {u b

Denote
'j(fj)'-_" “1;(5;) yreey fg(fJ)} A

Then the system (3) may be written in the form
(3) > 1(&) = 0.
,;i (8
4. We state now four lemmas which will be used in the following sections,
Lemma 1. The inequality
(1) 12 e < e~ gt

holds on the assumption that f is a polynomial of degree ¢ over K such that

for every polynomial g over K and for every element B of K. In particular
(11) holds for 1 =c <p— 1.

Lemma 1 has been proved in [3].
Lemma 2. The number of solutions of the system (3) is equal to
N =q4" id ; e(lf;(%7)) .
¢ +gq |;0H§ (1,(&5)

Proof. Applying the equations (10) and (8), we find

¢N=§...§§eu;m&n
| :);g...zﬁeur,(em

5 i=1

-3 TT X eat&) -

i=1 &
Picking out the term with 1= 0, we get furthermore

20
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CETED) }T 3 et&)
0 j=1 7]

which proves our lemma,

The following lemma is an extension oj‘ a result of Cuowra (see, for
example, [7]).
Lemma 8. The A-system (3) has a non-trivial solution in K if
2>gl

Proof. 1et 7,...,n, and &,...,¢ be the elements defined in
condition A. If 2' > ¢' then two of 2° elements

:Zi 1,(9;) ,

where 6; = 0 or 7;, are equal, i.e,

S 10 = 3 (8
A= 2

where 4, =0 or 9 (k=1,2) and (8y,...,0,) # (d,..., 0)
Therefore

2 00 — 40 = 0.

It follows from this and from condition A that we have the g's in K such
tvh‘t £j=0’ qp or CJ' (81,-.-'3.)¢ (0,...,0), md

Ig f(e) = 0.

The following lemma is an immediate extension of the corresponding
result for prime fields (see, for example, [23], p. 126).

This proves lemma 3.

Lemma 4. If y is a non-zero element of K then
|2 ety = @ — g
where d s the g.ed. of ¢ and q — 1.

Proof. Let ¢ be a fixed primitive element of K. We denote the index
of an element « of K to the base g by inda. Then the equation & = {
is solvable, for a non-zero element { of K, if and only if ind { is divisible

21




14 Ann, Acad. Scient. Fennicwe A. L. 360

by d, and it then has d solutions. Therefore, for d =1 we have
> e(y&) = 0. Hence we may assume that o> 1.
* For d> 1, we have

d-1
Terd) =1+ 2 3 efkind ) erd)
s it =0 ;#0
(12) PR ,;, ea(kind £) e(0)
d=1
- &0
where
eo(v) =
and

Uk) = . edkind £) ey?) .

&Fo

Moreover, for k& == 0 (mod d),
\U(k)P = ; ea(k ind £) e(y€) ; es(—k ind 7) e(—ym)

= ¥ 2 elkind (&g7)) e(y(& — 7))

E#0 n70

= > ekind {) 3 e(y({ — 1) 7)
A0 n#0

= Y efkind {) ¥ e(y(&— 1)n).
T#0 "

Using (9), we see that summation with respect to # gives ¢, for { =1,
and 0, for s 1. Therefore

[OE)E=gq.
Combining this with (12), we obtain

d=1
X vl £ 3 1UM| = @ — gt

§ 3. Theorem 1
5. We state
Theorem 1. The B-system (3) has a non-trivial solution in K if
(13) 8 =24t + 0)
where O = max (log, (¢ — 1), 1) and ¢ = max c;.

22




Amo TierivirNes, On the non-trivial solvability of some equations 15

Proof. We apply the method of induction. If ¢ =1, the assertion
follows from corollary 2 of theorem 2, the proof of which does not depend
‘on theorem 1. Assume that theorem 1 is true for systems of ¢ — 1 equations
where ¢ = 2. Then we have-to show that it is true also for systems of ¢

equations. ¢
If ¢ < 3, our assertion is a consequence of the result of CHEVALLEY.

Therefore we may assume that ¢ = 3.
Suppose that, contrary to our assertion, the system (3) has only the
trivial solution in K and that (13) is valid. If

g<2(c—1p

then it follows from the inequality (13) and from lemma 3 that the system
(3) has a non-trivial solution in K. Hence

(14) g=2"e— 1.
In particular we have
(15) g>(c— .
Suppose that 1= (4,...,4)# 0. Then at least one 4, say 4,
is non-zero. Therefore the system (3) is equivalent to the system

JZ‘;!'J(EI)=0 =1,...,u—1,u+41,...,4),

lg ‘g Mtj{e}) =0,

We may assume that

(16)

(17) () = ‘; Afy(&) 5
where j takes on the values 1,...,s, is identically zero for, at most,
(18) r={2t—1)(t—140)}—1

values of j. For if (17) is identically zero for example for j=1,...,
7+ 1, then (16) may be written in the form

lﬁfu(e,)=o 7, K s (o0 S T

3, 5 M) =0

and the induction hypothesis implies that this system has a non-trivial
solution (%,,...,&) where & . ,=...=§=0.

23
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By lemma 2 the number of solutions of the system (3) is equal to

(19) N=¢=+¢" 3 TT T ety

1#0 j=1 &

If ;&) is identically zero then

> e(t(E) =q.
5

In other cases it follows from condition B that 1f;(%) satisfies the assump-
tion of lemma 1, whence we then have

1Y ef&)) < (e —1)q".
s

Therefore, by (19),

N =g~ —q'g — Dqle—1~g e
(20) =g — (¢ — 1)@ e — 1y~
= g =M@ e — (e — 1y ) + e — 11 ).
It follows from (13) and (18) that

(21) s—r>20+0)—2t—1)(t—1+0)=4¢t+420—2.

We have, by (14),
g=2"c— 102 (e —1p+e°
and, by (21),
2t 21 41

K g T BV o T

Therefore

g.-r—!l > (G s 1):{-4-:-)4.4: v, (G = l)l{a-rj ¥
Combining this with (20), we obtain
N> ghe+=20c _ 1= 5 gle — 1% > 1

which is impossible. Thus our theorem has been proved.
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§ 4. Theorems about some special systems

6. We state

-

Theorem 2. The C-system Eajhmamlﬁﬁal solution in K if
(22) (s — 20) = max (2¢ 3" log, (6 1), 1)
J-

where ¢j = max cj.
(0]

Proof. Cases where ¢ = maxe¢; <3 or ¢; < 2, for some j, will be
considered in section 8. Hence we may assume that ¢ =3 and ¢ = 2,
for every 9.

Suppose that, contrary to our assertion, the system (3) has only the
trivial solution in K. Then we have, by lemma 3,

<.

Combining this with (22), we find

(23) ¢ 2T -1
Since the system (3) satisfies condition C, then, forevery j=1,...,s,

Ifj(&;) is not identically zero, for 13 0. Hence, by lemma I,
r; elf(&))| = (¢ — 1g*,
i

for 1% 0. Therefore we have, by lemma 2,
N - -1 - - r
¢ +q 'gj H Eea;(&n
> — (¢ — gt }'[ G—1)
= ghe=29 (ggh =19 — ]‘[ =1+ TT = 1)
from which we get, by (23),

! e—21) - e - L |
N=g¢ ]:[ic; ligH(q 1.
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Consequently, by the assumptions ¢ = 3 and ¢; = 2, forevery j, we have
N>1

which is impossible. Hence theorem 2 is true.
7. Theorem 2 implies the foﬂoﬁng weaker but simpler result.
Corollary 1. The C-system (3) has a non-trivial solution in K if
s =21+ C)
where C is defined as in theorem 1.

Let us consider the B-system (3) in the case ¢ = 1, i.e. the B-equation

(24) 3 e =o.

Since the f;'s are non-zero polynomials, the equation (24) satisfies condition
C and hence it is a C-equation. Consequently we have
Corollary 2. The B-equation (24) has a non-trivial solution in K if
s=2(1+40)
where € = max (logg (¢ — 1), 1), ¢ = maxg¢;, and ¢; is the degree of f;.
8. Let us consider in detail the cases of theorem 2 where ¢ << 3 or
¢; < 2, for some j. Now condition A is unnecessary. The case ¢; = 1 is
obvious. Indeed, in this case the system (3) which now consists of one
equation has a non-trivial solution, for s = 2. Moreover, if we have one
quadratic equation, then the value 3 of & obtained by CHEVALLEY is, by

a well-known result of Dickson ([13], p. 46), the best possible.
If t=2 and ¢ < 3 then the system (3) is of the form

(25) jZk(ﬁﬁ_l_ﬁ‘lEﬂ:ﬂ {1:=l,2), a,j,ﬁ,.jeK.
The number of solutions of (25) is equal to

N=qg"+ Z ﬁ Z e((Ayxyj + 235‘2;)5} + (ABy + Afy)é))

1#0 j=1 &
where 1= (i, 4,). Now A8, + Afs # 0 whenever
(26) Aoy + Agxg = 0,1%0,

for otherwise
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M(ondl + Bub) + Alonél + Puby)

is identically zero, for a non-zero 1, and consequently (25) does not satisfy
condition C. Hence if (26) holds then we have, by (9),

}; e((Agxyy + Agoxa) &1 + (AP + Zafiay) &) =.§ e((APy + Afn) &) = 0.

Therefore
N=¢g?*+4q" g' ;I'[ ; e((Aaovyy + Aang)) & + (MaPy + APy &)
=%
where the outer summation is over all the elements 4, and A, of K such
that A, + Ay 7 0. Consequently we have, by lemma 1,
Nz¢? - — 4"
= ¢ g = + 1)
S gV =0>1,

for & = 4. On the other hand, this value of s is the best possible for the
general system (25) which satisfies the conditions B and C (see [12]). For
example, the system

E+8+8=0, §+&+&=0
has only the trivial solution in the field GF(5).

9. In some special cases condition B is not needed in theorem 1. For
example, this is the case if we restrict ourselves to the system

,Z}'yf;“-:‘] G=1,...,8, py€K.

We state our result as follows.

Theorem 3. Let the [i's be polynomials such tha the degree of every term
of the polynomials f , ..., [, is divisible by p" but noi divisible by p"+',
for every i =1,...,t. Let cij = p"by. Then the A-system (3) has a non-
wrivial solution in K if

s = min (1 + bt, 24(t + B))
where B = max (log, (b — 1), 1) and b = max by.

Proof. Since af =w«, for every element x of K, we may assume
that n; <=n, for i =1,...,f Then the system (3) is equivalent to
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(;!u(sﬁ)'=o G=1,...,0

Furl.hqr_mom, this is equivalent to

n— n‘.

where r = p

(27) 2;9&{&)=0 A
where

gi(&) = (fu(&))

and hence the gy's have, after writing &' = £, no term of degree divisible
by p. Consequently (27) satisfies condition B. Moreover, gy is a poly-
nomial of degree b; over K and gy(0) = 0. Furthermore, the fact that
(8) is an A-system implies that (27) too is an A-system, and consequently
(27) is a B-system, Applying the result of CaEvALLEY and theorem 1 of this
paper, we find now our assertion.

We remark that in the cases in which 1+ b < 2¢(¢ 4+ B) it is un-
necessary to assume that (3) is an A-system, since we use only CHEVALLEY's
result in these cases.

10. The proof of the following theorem is very similar to that of
theorem 1. However, the deep result of Carurrz and Ucnrvama is not
needed now.

Theorem 4. The A-system (4) has a non-trivial solution in K if
(28) 822U+ D)
where D = max (logy(d — 1), 1) and d is the g.ed. of ¢ and q— 1.

Proof. Since there is a one-to-one correspondence between the solutions
of (4) and

;I?ﬁ=0 ((=1,...,0, W€K,

we may assume that ¢ is a divisorof ¢ — 1, thatis, d =¢. If ¢ < 3,
our assertion is a consequence of the result of CHEVALLEY. Hence we may
assume that ¢ = 3.

Consider first the case ¢ = 1. Suppose that, contrary to our assertion,
the A-equation (1) has only the trivial solution in K and (28)is valid. Then
we have, by lemma 3,

2'<q.
Combining this with (28), we find
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(29) ¢ 2ile—= P

Using lemma 2, lemma 4, and the inequality (29), we now see that N, the
number of solutions of (1),.satisfies the following inequalities:

N=qg"4q" ...ZI.[ g: e(Ay;&5)

27 =@ =D —1yg?
= ¢ — e = 1) + (c— 1))
2 e -1y Ze—1"> 1.

This is impossible and hence our theorem has been proved in the case
i=1.

Assume that theorem 4 is true for systems of ¢ — 1 equations where
t = 2. Then we have to show that it is also true for systems of ¢ equations.
This part of the proof is similar to that of theorem 1 and will therefore be
omitted. The only essential difference is that lemma 4 is used instead of
lemma 1.

11. We now generalize the definition of P(c) as follows: P(c, t) is the
least integer s such that the system (4) has a non-trivial solution in every
finite field K, for every matrix (yy;). Thus P(ec, 1) = P(c). The numbers
P'(c,t), Pyle,t), and Pj(c,?) are defined correspondingly.

Now theorem 4 implies immediately the subsequent corollaries where C
is defined as in theorem 1,

Corollary 1. P(c,t) < 26 + {2(C}.

Corollary 2. P,(c) =2+ {2C}.

Hence we have, in particular,

Corollary 3. P(c,f) < 2¢ + {2tC} if ¢ is odd.
Corollary 4. P(c) <2+ {2C} if ¢ is odd.

12. In the fields GF(p") with # > 1 it is often convenient to use the
following :

Theorem 5. Assume that n = ru where r and wu are positive integers.
Then the system (4) has a non-trivial solution in K = GF(p") if

29




22 Ann. Acad. Scient. Fennica A1 360

(30) s =1+ altdu

where d is the ged. of ¢ and q— 1, a the ged. of d and h =
(1 — 1) (P AR

We note that the system (4) need not be an A-system in theorem 5.

Proof of theorem 5. We may again assume that ¢ is a divisor of p" — 1,
that is, d = ¢. Let p be a fixed primitive element of K. Then " isa
primitive element of GF(p'). Moreover, ¢* is a cth power in K if I
is a multiple of a@%. Therefore the (a~'¢)th powers of the elements of
GF(p) are eth powers in K.

Let

vy = LZ; yad* !

where ¢ is a fixed generator of K over GF(p") and the y;u’s are elements
of GF(p). Consider the system

31 gl s i Mfloadpe oy L oy s
(31) _,z;?“""" (@ }

If (30) holds, then, by the theorem of CHEVALLEY, there exists a non-trivial
solution (9, ,...,7,) of (31) with the 5/s in GF(p'). Since the (a"'c)th
powers of the elements of GF(p") are eth powers in K, there exist ele-
ments & ,...,& in K which are not all zero and are such that £ = ;.
Thus (& ,...,§&) is a non-trivial solution of (4) and so theorem 5 has been
proved.

As an illustrative example we consider the system (4) in the field GF(64).
We find that (4) has a non-trivial solution in GF(64) whenever

14+t if e=1 (r = 6),
1+ 2t if c=3 or 9 (r=3),
B CETE 0 ey (r=2),
1+ 6¢ if ¢c= 63 (r=1).

13. Finally, we consider the A-system (4) in the fields K = GF(g)
such that ¢ — 1 is divisible by 3e¢. We shall first prove two lemmas (for
lemma 5, cf. [21], theorem 1).
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Lemma 5. Suppose that there exist non-zero elements o and t of K
such that o — v = 1. Then the A-system (4) has a non-trivial solution in
K if
(32) 3> 4.

Proof. Since 3'> ¢, two of 3" vectors

(E?lﬁv---s;?u"?)!

where & = 0, 1, or o, are equal. Hence

=D wlh (i=1,...,1)
IZ;?UJI }g; %2
where 43 =0, 1, or o, for k=1, 2, and

(Byyseeesfn) # (die,...,00).
Therefore

) =i ==l an., 8
J)_:;rw ( )

where g = 0j; — =0, +£1, £, or £7, and
(&y,---28) #(0,...,0).

Since (4) is an A-system, there exists an element # of K such that
#* = — 1. Consequently & =% where #,=0, 1, 3, ¢, 7o, 7, or g7.
The system (4) has therefore the non-trivial solution (%,...,%) in K.

Lemma 6. Let q= 14 3ke where k is a positive integer. Then
the A-system (4) has a non-trivial solution in K if (32) holds.

Proof. Let o be a primitive element of K. Then
@*=D@E@*+"+1)=¢"*—1=0.
Since 9"‘ # 1, we have

or

ey — (¢ =1
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where 7 is again an element of K such that 5° = —1. We apply now
lemma 5, setting o = no**, v = ¢*. Then we obtain the required result.

Using lemma 6, we find
Theorem 6. The A-system (4) has a non-trivial solution in every finite
field K = GF(1 + 3 ke), where k is a positive integer, if
& = 2t + max (logg (c — 1), 1)).

The proof of theorem 6 is similar to that of theorem 4 and will be omitted.

§ 5. On sumsets of subsets in finite fields
14. Let A, A,,..., A, be subsets of K and let ¢ be a divisor of
g — 1. Define
| 4| = the number of elements in A,
A*={t€A |+ 0},
A" ={t€EK |t =19, n€A},

,Z'l“’ = {EEKI$=}ZM, o €45}

Define, moreover,
K; = o’'K*

where ¢ is a fixed primitive element of K. Then K‘ = K, and K; = K
if and only if == j (mod ¢).

Let I, be an index set {4,,...,4,} where 4, ,...,i, are integers
such that 0 <4; = ¢ — 1. Assume that 7, is a subset of I,,, and define

Q = Qu(lL) =,;, K;.

Then @, is a subset of @,.,. If y,,...,y, are non-zero elements of K,
we put

R(}'l"--!?-) Z{’lEK.'?} =}E 7;&}: EIEK}
Clearly

Byr,.-om) = @

if  is in K;, for every j=1,...,0
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If  isin QF so is the set (pK,)*. Hence @F is a union of some
cosets K* of the multiplicative group K* modulo K. Thus there is
an integer l = L(I;) such that

@] =1+ bLm

where m = |K¥| =¢ (g —1). Clearly 1, =k.

15. Let (1) be an A-equation, i.e. let —1 =g, for some element 7%
of K. We may assume again that g — 1 is divisible by ¢. Since the
coefficients 9; of the equation (1) are non-zero, we may choose the i;’s
such that y; is in K;. forevery j=1,...,8 Ifnow [, =1,_, then

K, isin @_;. In particular y, is in @,_, and hence
-1
h= 2
which implies that the equation (1) has the non-trivial solution
(E}:--'r l—]’n) in K.
If I, ,=c then I, =1,_,. Therefore, if I, , =e¢, for every index
set I, , in K, then every A-equation (1) has a non-trivial solution in

K. Since we may divide the equation (1) by y,, we may restrict ourselves
to those sequences I, , having the first member 0.

§ 6. Theorems about the A-equation (1)

16. Assume that ¢ is a fixed positive integer. Let x be an element of
K. Denote, briefly,

(33) ; e(af) = 8(a) .

We shall now prove two lemmas needed in the proof of theorem 7. Lemma
7 which is an analogue of a result of Hua and VANDIVER (see [16], proof of
lemma 2) deals with S(x). Lemma 8 is purely number-theoretical.

Lemma 7. If ¢ is a primivive element of K then
a-1
*P_:,‘. |8(e")[* = (@ — 1) dg

where d is the g.od. of ¢ and g — 1.
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Proof. We have
I8@)[* = 3 elaf) 3. e(— o) = E 2, elolE — 1) .

: £F 9

Since the number of solutions of the equation & — 9" = 0 is equal to
1 4+ d(g — 1), we have, by (9), '

IS =3 T 3 ol — o) = g +dlg — g
This implies
’g IS@F = 3 1Se) = ¢+dg — Vg~ = @D~ Da.

Moreover

8(e'n’) = X eld'n'€) = X e(d"T) = S(e"

for every non-zero element n of K, whence
d=1 q—2
> 18" = dg — 1) Z; |S(6MF = (d — 1)dg.
k=0 k=

Lemma 8. Let E(0),...,E( — 1) be non-negative numbers such
e—1
that Y (BG)P=F and E(c+ i)=B(i), for every i. Let, furthermore,

i=0

kyy...,k, benon-equal integers suchthat 0 = k; = ¢ — 1, forevery j, and
lee 2 <s8=c. Then

e—=1 @

Y TT B® + k) < 8-"F°

W=0 j=1

where w = §s.
Proof. 1t follows from the arithmetic-mean — geometric-mean inequality
that
TT EB® + &) = s7°GF

j=1
where

Gy = ;Z‘l (E(h + K.
Furthermore

e—1

Sh= 35 3 ER+ b=,

0=G=PF.
This implies that
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=1
‘z;JHH =g, 0SS Hrh=1

where H, = Gy/F. Since w =1, we have therefore

-

-

2 b "
*Z_,: s =8
or
e—1
DGy S sF”.
he=n
Hence

e—1

5 e=1
XTIER+ k) < a-"iz; & Sie-"re.

=0 j=1
17. We are now able to prove

Theorem 7. If s =3 and
(34) g =s"'dd — 1),

where d is the g.c.d. of ¢ and q — 1, then the A-equation (1) has a non-
trivial solution in K.

Proof. We may assume that d = ¢. Furthermore, we may assume that
no two coefficients y; are in the same set K; (in the notation of section 14),
for otherwise the equation (1) has a non-trivial solution in K. Consequently
we have

s -2 »
— A+ R Aotk
@) 3 TT ISl =3, TTIs@ )1 = m 5 TT 18 )

where m = ¢ g — 1), k; is the least non-negative residue (mode) of
the index of y; to the base g, and %, ..., k, are hence non-equal integers
such that 0 <k =c¢ — 1, for every j. Furthermore, S(o**') = S(o")
and, by lemma 7,

c~1
‘ZA IS(@)F = (c — 1)eq.

Since we may assume that 2 =& = ¢, we have therefore, by (35) and
lemma 8,

3 TT 18] < 8(g — 1)e"}c — 1)%g"
i7o j=1

where w = }s. It follows from this and from lemma 2 that the number
of solutions of the equation (1) is equal to
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N =g 4¢3 TT ()
i#0 j=1
2 ¢ =g — el — 1
Furthermore, this implies
Nz2g g — 8 e — 1)) + &N — 1))
From this we obtain, by the assumption (34),
N=gls"ce—1)* 2 (s ") c —1).

Since s =3 and since we may assume that ¢ > s, the last inequality

implies that N > 1. This proves theorem 7.

18. As consequences of theorem 7 we now obtain the following two
theorems in which ¢ has been eliminated.

Theorem 8. If s =3 and
2 = d(d — 1)/¢-?,
where d is the g.c.d. of ¢ and ¢ — 1, then the A-equation (1) has a non-
trivial solution in K.

Proof. If the A-equation (1) has only the trivial solution in K then, by
lemma 3,
2 =gq
and, by theorem 7,
g < s 'dd — 1yl
so that
2s < d(d — 1)¢9

Theorem 9. P,(c) = 1 + {2log,c — log, log, ¢} .

Proof. Using theorem 8, we find easily that theorem 9 is true, for ¢ < 3.
Hence we may assume that ¢ = 4.
Suppose that s = 1 + 2log, ¢ — log, log, ¢. Then

2 = 2¢%log, c.
One can easily show that

1 + 0.27 logy ¢ — log, logy ¢ > 0.
Hence
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8> L73 log, e
and

(36) . 28> 3467
On the other hand

Elogse — 1 — log, logs ¢ = 0

when
1, for 4 <¢ <7,
E =
0.87, for ¢ =8.
Hence
8—22=(2—FE)log,c
and
2 . ;
e =y, HO 7,
: < 2 i log, e S¢S
s—2= (22— E)logee — | 1.77
ofor o= 8.
log, ¢
Consequently
(0 — 19 2 guen [0 Bor S 0=T,
3'42s for cgs'
Therefore

4:086c=344c, for 4 =c <=7,
(c— 1)e=9 <
3.42¢c, for ¢ =8,
Combining this with (36), we find
2's > c(c — 1)1¢-9 |
for every ¢ = 4. This proves our theorem.
Theorem 9 implies immediately

Corollary, P,(c) < 2log,c¢ when ¢ is large enough.

19. Theorem 9 gives an upper bound for P,(¢). On the other hand, we

have
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Theorem 10. There is an infinity of odd c¢'s such that
P'(¢) = 1 4+ {log, (¢ + 1)} .

Theorem 10 implies c;Bviously the corresponding results for P(c) (¢ odd),
for Pj(c), and for P,(c). Since there is an infinity of primes of the form
4m + 3, theorem 10 is an immediate consequence of the following

Lemma 9. If 2¢ -+ 1 is a prime then
(37) Pi(e) = 1 + {log, (¢ + 1)}.

We remark that there exist ¢'s such that (37) is not true. For example,
Py(4) = 3 (see section 22).

Proof of lemma 9. We use the notation of section 14. Tn the field
K=GF2c+1) K,={0,1, —1}. Let

K‘j={0,2”‘,—2f“‘} (Gj=1,2,...).
Then
Q1={0,£1,...,4+"—1)}.
Hence

K, N Q,_, = {0}
when £ —1<2¢414He. l<et+ 1. If 8 < 1-+log,(c+ 1) then

the equation
))_1 2/~ = 0
has therefore only the trivial solution in G#(2¢ -+ 1). This proves lemma 9.

Denote ! = {log, (c + 1)}. Let ¢ be an odd integer and K a finite
field such that there exists an equation

Zlyréj=0, v €K

J
with the trivial solution only. Then the system

1

Z?ﬁa-uu=° F=1,...,1)

has no non-trivial solution, for every positive integer t. Hence we have the
following corollary of theorem 10,
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Corollary. There is an infinity of odd e¢'s such that
P'le,t) =1 + t{logy (¢ + 1)},
for every .

The corresponding results also hold for P(c,t) (codd), for Pj(c,1),
and for P,(c, t).

§ 7. Caleulation of P,(c) and Pj(c), for small values of ¢
20. We may again restrict ourselves to fields K — GF(g) such that
g — 1 is divisible by ¢. We require two lemmas (in which we use the same

notation as earlier).

Lemma 10. If ¢ is a prime and ¢ <3} (q — 1), then
l.+lgmin(£.+2, c)-

This lemma has been proved in [10].

Lemma 11. If ¢ is a prime, ¢ <%}(qg— 1), and

(38) l({0,4) =c—2(s—3)
whenever 1, is one of the inlegers
(39) 1,2,:.05 [ef(s—1)],

then the A-equation (1) has a non-trivial solution in K, for all the elements
Yoree-17 of K.

Proof. We showed in section 15 that if I,_, =1, _,(I,_,) =¢, forevery
index set

(40) Ia—1={0:i|r---!i¢—1}

in K, then the A-equation (1) has a non-trivial solution in K, for all the
elements p; of K. Furthermore, it follows from lemma 10, by induction,
that (38) implies the equation [,_,(f,_,) = ¢.

Obviously the following transformations of the index set (40) are allow-
able:

(i) permutation of the members of (40),

(ii) addition (mode) of the fixed integer r to every member of (40)
(corresponding to the multiplying of the equation (1) by ¢).
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Furthermore, we may assume, by the proof of theorem 7, that the ;s

are non-equal and each of them is 5 0. Therefore the members of (40) are
8 — 1 non-equal elements of the cycle
(41) Oy B sope=-1):
It follows from this that there are two members of (40) such that the
distance between them in the cycle (41) is =< [¢/(s — 1)]. Consequently,
applying the transformations (i) and (ii), we can carry every index set (40)
to a form such that the first term is zero and the second term is one of the
integers (39). This proves the lemma.

21. We now turn to the investigation of P(c) and P'(c), for ¢ < 11
and odd. We also consider cases where ¢ = 3 or ¢ = 5, because our method
is completely different from that of LEwis and Gray.

L ¢=3. It follows from lemma 9 that P'(3) = 3. By theorem 8
P(3) < 3. Hence P(3)= P'(3)= 3.

II. ¢ = 5. Lemma 9 implies that P’(5) = 4. On the other hand, the

equation
4

(42) ,Zl & =0

has a non-trivial solution in every finite field GF(q), for q < 16 by
lemma 3, for ¢ = 16 by lemma 6, and for ¢ > 20 by theorem 7. Hence
P(5) = P'(5) = 4.

It should be mentioned that the existence of a non-trivial solution of the
equation (42) in the field GF(16) also follows from a deep theorem of
MrrcreLL ([19], theorem 2), from a result of SEGRE ([20], p. 252), or from
our theorem 5 (with r = 2).

III. ¢ = 7. The equation

4

(43) J; yE =0

has a non-trivial solution in the field GF(g), for ¢ < 16 by lemma 3, for
g = 43 by lemma 6, and for ¢ > 63 by theorem 7. Therefore we are left
to consider the equation (43) in the field GF(29) only.

Using the element 2 as a primitive element of K = GF(29), we get,
by means of a simple numerical calculation,
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Hence ({0, 4}) =5, for iy = 1, 2. Therefore, by lemma 11, (43) has a
non-trivial solution in GF(29). So we have P(7) = 4. On the other hand,
the equation

H428488=0
has only the tiivial solution in GF(29), since Kj is not a subset of K, + K,
in this field. Therefore P’(7) = 4. Hence P(7) = P'(7) = 4.

IV. ¢=9. It follows from lemma 9 that P’(9) = 5. Therefore, by
lemma 3 and theorem 7, P(9) = P'(9) = 56 if every equation
5

(40  Sw=o

has a non-trivial solution in GF(37). Using the element 2 as a primitive
element, we find that in GF(37)

K,+ K, =EK,UK,UK,UK,UK,,
K, + Ky = K,U K, UK,U K, U K, UK,

Hence [({0,1,}) =5, for i, =1, 2. Therefore, by lemma 11, every
equation (44) has a non-trivial solution in GF(37) and consequently
P(9) = P'(9) = 5.

V. e=11. It follows from lemma 9 that P’(11) = 5. Therefore we
have to consider the equation

5
(45) g@ﬁ=m

It follows from lemma 3, lemma 6, and theorem 7 that it is sufficient to
consider the equation (45) in the field GF(89). In this field
K,+ K, = K,UK,UK,UK;UK,UK,UK,,,
K, + K, = K,U K,U K, U K, U K,UK,UK,U K, UK,
when 3 is used as a primitive element. Hence P(11) = P'(11) = 5.

22. We now calculate the values of P,(c) and Pj(c) for even ¢ = 8.

I. ¢=2. Theorem 9 and lemma 9 imply the well-known result
Py(2) = Py(2) = 3.

II. ¢=4. Since Py(2)=3, then Pj(4) =3 On the other hand, the
equation
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n& + 7t + néi =0

has a non-trivial solution in GF(gq), for ¢ = 9 by theorem b (with r = 1),
for ¢ = 256 by lemma 6, and for ¢ > 36 by theorem 7. In addition, in the
field GF(17) K, + K, = K, + K, = K. This implies, by lemma 11, that
P,(4) < 8. Hence P,(4) = P\(4)= 3.

III. ¢=6. It follows from lemma 9 that P,(6) = 4. On the other
hand P,(6) =4 by lemma 3 (for ¢ < 16), theorem 5 (for g = 25),
lemma 6 (for ¢ = 37), and theorem 7 (for ¢ > 37). Hence P,(8) = P,(6)
==

IV. ¢=8. Lemma 9, lemma 3, and theorem 7 imply that P,(8)
=P1(8) = §.

In cases where ¢ = 10 the calculations are more complicated.

§ 8. On the lower bound for the maximum moduli of a trigonometric sum

23. Let ¢ be a fixed positive integer and a = (x;,...,a) a c¢-
dimensional vector over K = GF(g). Define

8(8) = Y elogt + ... + k).

AnpersoN and StIFrLER [1] have considered the function

M(c) = max |S(a)| .
a¥o

Carcrrz and UcHivama ([3], our lemma 1) have proved that
Me) < (e — g,

for ¢ =< p — 1. On the other hand, it has been proved in [1] that if ¢ is
a prime and ¢ < ¢ — 1 then

7 e
(46) w0 > (e(7) - )"
We showed in the proof of lemma 7 that
2 I8P =@E@—1)(@@—1)g

ano
where S(x) is defined by (33) and d is the g.ed. of ¢ and g — 1. Tt
follows from this that
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(47) max |S(x)| = (@ — Hgt.
This result implies furthermore the inequality

Me)=(@d—1)g).
Since

(cty(:’)-_—cl(q—o+1)...gg.-,!q-

(c—1), for ¢ 23,
it
((c — 2)/2), for ¢ =15,
this result is better than (46) if ¢ — 1 is divisible by ¢ and ¢ =3 or

2(q — 1) is divisible by ¢ and ¢ = 15. The restrictions ¢ is a prime and
¢ < g — 1 are not needed in the proof of (47).

§ 9. Conjectures

24, Let
H(t) = lim sup (P,(c, t)/logs c) .

Let H'(t) be the corresponding number when P,(c,f) is replaced by
Pl(c,t). Denote, briefly, H(l)= H, H'(l)= H'.
Theorem 10 and theorem 9 imply that

e S e e e
We state

Conjecture 1. H — H' = 1.
We showed in section 19 that there is an infinity of ¢'s such
that Pi(c) = 1 + {logy(c + 1)}. On the other hand, we have not

found any ¢ such that P,(c) > 1 + {log, (¢ + 1)}. We conjecture that
1 + {log, (¢ + 1)} is the scriticals value of P,(c). In other words, we state

Conjeeture 2. P,(c) = 1 + {log, (¢ + 1)}

This would of course imply conjecture 1.

43




36 Ann. Acad. Scient. Fennice A. 1. 360

It follows from the corollary of theorem 10 and from corollary 1 of

theorem 4 that
tS H'() = H) = 2t,

for every positive integer f. It seems possible that the following extension
of conjecture 1 is true. 3

Conjecture 8. H(t) = H'(t) = t, for every positive integer ¢

University of Turku
Turku, Finland
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On systems of linear and quadratic equations in finite fields

1. Introduetion. Let K = GF(g) be a finite field of ¢ elements where
¢=p", p is an odd prime and n a positive integer. Consider the system

2“15: =
=]
1) @
l}zlﬁusj=ﬁ‘ (‘i:l,...,‘,
where «,,...,x, are non-zero, «,p;,...,p arbitrary elements of K,

and the f;’s are elements of K such that the f X & matrix (f;) has
rank t. The purpose of this note is to prove the following result.

Theorem. The system (1) has a solution (£,,...,&) in K if s—
2 4 2. On the other hand, in case s = 2t + 1 there exist, in every K, sys-
tems (1) which are insolvable in K.

This theorem has been proved by Dicksoxn [4] in case ¢ = 0 and by
CoHEN ([2], remark 4; [8]) in case ¢ = 1. It is a conjecture of Conen [2].

2. Preliminary remarks. Let o, 0,,...,0 be elements of K. Define
the trace of ¢ as

tl‘(o')=0'+0’+...+d?n-1

so that tr(c) may be considered as an integer (mod p). Define, furthermore,
8(0') = 2 itr(o)lp =

Then we have

@) (3 a) =TT ela).
= Jj=1
Consider the system
(3) S, 8)=0(0=1,...,4)
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where the fs are polynomials with coefficients in K and the §s are
elements of K. It has been proved in [1] that the number of solutions
(&,...,8&) of the system (3) is equal to

(4) q"Ze('—‘ZIM)‘;;...ge{g‘;ma,....e.n.

Here and hereafter, in the sums of type »' the summation is over all the

[
vectors ¢ = (y;,...,7.) with the 9s in K. Morcover, in the sums of
type > the variable runs through all the elements of K. By (2) and (4),

&
the number of solutions of the system
J;;flj{e;):ai (£= l:"'!u):

where the f;’s are polynomials over K, is equal to

®) 7 Ye(— Sy TT Y e vl -
< f=] =1 & i

-]

Let us denote
Sy, 8) = 3 e(y& + 6¢).

&
It is well known (see, for example, [2]) that |S(y, 8)| = ¢ if y + 0.

8. Proof of the theorem. Let s = 2f -} 2. Then the number of solutions
of the system (1) is, by (5), equal to

N=q 3 el—m —-‘Z Ap) ]j S, Z; Aiby)

where ¢ = (x,4,,...,4). We break up this summation into two parts
according as x = 0 or x # 0, writing

N=qg"Y} + ;) =q" YU+ Uy.

=

In case ¢ =0 we have U, = ¢®. In case ¢ = 11U, is, by (5), equal to
¢'N, where N, is the number of solutions of the system

2142

Aﬂgfj=ﬁi G=1,...,8.

Because the matrix (f;) has rank ¢ then N, = ¢'** . Consequently
U, =¢'** for every t. In the sum U, we have xx; # 0, forevery e.

Therefore |S(xx;, 3 % py)| = ¢™ and hence
i=]
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U] = (¢! — ')’ = g2 — ' *2 .
Consequently
Nzg"'(U—|U) 2¢>0.

This proves the former part of the theorem.
For the proof of the latter part of the theorem it is sufficient to note

that the system

El+Et+i=0 G=1,...,9,
where « is a non-square of K, is insolvable in K .

University of Turku
Turku, Finland
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On systems of equations in finite fields

1. Introduetion. Let K be a finite field of ¢ elements where ¢ — p", p
is a prime and n a positive integer. Let f(§;) be a polynomial of degree
¢; with coefficients in K such that f,(0) =0 and fi(—a) = — fyls),
for every element « of K. Let, furthermore, K; be a subset of K such
that (i) 0 € K, (i)« € K, implies —« € K, and (iii) ¢;, the number
of elements in K, is > 1. We study the non-trivial solvability of the

system
(l) _;;fﬂ(fj)=0’Ej€K! [‘i=l,...,‘),

using exponential sums >e(kf(£,)) where kif() = ‘Zi"ififﬁf) Le(x) =

] =

¢ tr(x) is the absolute trace of x, and the summation >’ is
£j

over all the elements of K j- Our main result is

~ Theorem 1. Let »y,...,r, be real numbers such that
(2) Z'e(kf;(fj)) = =1,

b 4

Jor every K. Then the system (1) has a non-trivial solution (&,,...,¢&) if

®) TT @+ 1) >q’]f[(r,+ 1.

As consequences of this theorem we find some results which extend,
improve, or sharpen previous results of CHEvaLLEY [2], LEwis [10], Gray
[9], Canowra ([3]—[8]), SummuUraA [8], and TrerivirNex ([12], [13]). As a
simple example of them we mention here the following corollary of theorem 5.

Let d, the ged. of ¢ and q— 1, be odd. Then the system

ZnE=0 G=1,...,0

has a non-trivial solution (& ,...,8) in K if
s = 211 + max (logy(d — 1), 1)) .
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2. Preliminary remarks. Let V' be the space of (-tuples over K .
Let a=(x,...,4) and b= (f,...,H) be elements of V and «
an element of K. Define, as usual,

-+ b=(a1+ﬂl$"°tal+ﬂl}!

o8 = (o, .. ,0,),
and

ab=ap + -+ xp.
The 0-clement. (0,...,0) of V will be denoted by 0.

Define the trace of x as
trix) =a+aP+4 - - +a""
so that tr(x) may be considered as an integer (mod p). Define, furthermore,
e(x) = e*™ P
Then (see [13], section 3)
(4) e(k(a + b)) = e(ka) e(kb) ,
for every element k of ¥V, and, moreover,
¢g'ifa=0,

b e(ka) =
©) g k) lOifaaf'O.

K
Here and hereafter, in the sums of type Z and Z the summation is over
k k#0

all the elements of V and over all the non-zero elements of V', respectively.

Furthermore, in the sums of type ', >, and )"’ the variable runs through
& & &jw0

all the elements of K, through all the elements of K;, and through all
the non-zero elements of K, respectively.
Denote

f,{lfj) = (fu(Ej) youe ,f,;ff;)l .
Then the system (1) may be written in the form

Zt,(e,)=o,sje1f,.

It is easy to show that the exponential sum »"e(kf(£)) is real, for
&
every element k of V. Indeed, we have, by the definitions of K; and

1) »
Se(kt&) = Yelkt(—)) = Zre(—klyE) = 3Ve(kt ()
Ul L] i 5

where Z denotes the complex conjugate of z.
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3. Proof of theorem 1. Let
I = I . o &y=AI E{1,. ... 8} | §,=10},
- Lif § # 0, for every j,
(6) Al 8 =117 (7, + 1) otherwise,

and

l-n B(é‘la---,;.):{A(El""?ealif!;fl(ej)=0’

0 otherwise.
Let, furthermore,

8) M

I

X BB,k

L 2y
Then (1) has a non-trivial solution if M > ﬁ (r;+1).
j=1
We have, by (5), (7), (8), and (4),

$U = T S A8 T etk 3 1)

& s
9 .
(9 -1 g Ezr ") ;’A(E, e E.)He(kft(ﬁn .

It can be shown, by induction, that
10 B R || W - : = . ' :

Indeed, it is easy to see that the statement (10) is true for s = 1, and we
assume it to be true for s — 1 variables &;. Since, by (6),

i !(rs'l_ I)A(fl PR rEn—l)ifec= 0 )
A(El." Al ’El—l)ifel # 03
then the left side of (10) equals

A&, ..., 8)

s—1

(r.+1) }; so S S UR(E s ona ki) ]‘[e(xr,(sm -
1 -1 o

=1
Z' LN Z'A(El g il Er-l) He(kijﬁj))gz:e(ktl(ean .

& Se—1
Using the equation
‘e(kE,(E) = De(kL, () — 1

fa70 &
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and the induction hypothesis, we find that this is, moreover, equal to

=1
(r+ Y'e®LE) X' A, ..., 5._.)]‘[ e(kt(£)
[ - & =1 s

- ]‘[ r; + ekt (&) -

Thus we have proved the equation (10).
Using (9) and (10), we get

L4

qW=§ﬂm+mew
&

J=1

~TT@+m+3 TT (0 + Ye(ktse)) .
- &

hAD =1

We have hence, by (2) and (3).
M :a.q"j]'[(q, + ) >ﬂ{r, + 1)
which is the required inequality.

4. Consequences of theorem 1. Since e(kf(0)) =¢(0) =1 then
DVe(kty(&) = 2 — ¢;. Therefore we may take r; =g, — 2 in theorem
&

J |
1. Then

T+ = 5 |y 3 + 1)
Consequently we have the following corollary of theorem 1.

Theorem 2. T'he system (1) has a non-trivial solution if

ot A

This theorem is an extension of a result of CHOwLA's (see, for example,
[5]) For some related theorems, see [11], theorem 1, and [13], lemma 3.
Theorem 2 can be proved also by using UHowraA’s method but it is inter-
esting to see that all the theorems 1—5 can be proved by using exponential
sum methods only.

If we put K, =---= K, = K , we get immediately, by theorem 1,
the following result.
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Theorem 3. Let r,...,r, be real numbers such that »e(Kf(&)) =
)
— 1, for every k. Then lhe system

11 o T s
(11) ,;f““’) (@ )
has a non-trivial solution in K if
ﬂ(q+r,)>q’]'[(r,+u.
Carnrrz and UcHryama [1] have proved

Lemma 1. 7The inequality
| TelfEN| = e~ 1)gt

holds on the assumption that f is a polynomial of degree ¢ over K such that
Jor every polynomial g over K and for every element § of K.

In the following theorem we must suppose, because of the assumption
of lemma 1, that the system (11) satisfies the subsequent condition (cf. [13]).

Condition B. For any value of j no non-zero linear combination of the
polynomials fy;,...,f; over K can be written in the form g¢" — g+ f
where g is a polynomial over K and f is an element of K .

It should be noted that condition B is satisfied at least in the case
where ¢; = p — 1, for every i and j. Therefore (see [13]) condition B
is no restriction in prime fields.

Define the degree of the 0-polynomial as — o0 and suppose that there
exists at least one non-zero polynomial fy(&). Combining theorem 2
with theorem 3 and lemma 1, we then find

Theorem 4. Assume that the system (11) satisfies condition B. Then
il has a non-trivial solution in K if

(12) s = 24(1 + max (logy(c — 1), 1))

where ¢ = maxc;.
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This theorem sharpens theorem 1 of [13]. For some related results,
see corollary 1 of theorem 2 of [13] and theorems I and II of [12].
For small values of ¢ our method gives better results than that mentioned
in theorem 4. For example, we may replace the inequality (12) by s =
14 2¢ incase ¢c=2 and by s =3¢ incase ¢c=3.

Proof of theorem 4. Tf ¢ =2, our assertion is a consequence of a
well-known result of CHEvALLEY's [2] (and it is easy to prove also by a
slight modification of the following proof). Therefore we may assume that
c=3.

Suppose that, contrary to our assertion, the system (11) has only the
trivial solution in K . Then we have, by theorem 2,

St
Combining this with (12), we find
(13) ¢ r=(c—1)".

We may take, by lemma 1, r; = (c — l)q‘ , for every j. Then
TT@+n =g+ -1y
= g¥e — 1)~ — gt + (¢ — 1y
=g e — 1)~((c — gt 4 1y
from which we get, by (13),
JT@+m)>de— gt +1r = ¢TI0+ 1.
This is, by theorem 3, an impossible inequality. Hence theorem 4 is true.
We say (cf. [13]) that the system
(14) ;y,.je;=o G=1,...,0,
where ¢ is a positive integer, is an A-system if —1 is a cth power in K

(for ¢ =1, cf. paper [5] by CHowLA). Using the same method as in the
proof of theorem 4, we can prove

Theorem 5. 7%he A-system (14) has a non-trivial solution in K if

8 = 2t(1 + max (logy(d — 1), 1))
where d is the god. of ¢ and q — 1.
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Theorem 5 is an extension of some results by Cuowra ([3]—[8]) and
SHMURA [8] and an improvement for theorem 4 of [13] (see also theorem
IIT of [12]). Tt is, practically, a corollary of our theorem 4. It should be
noted, however, thatin the proof of theorem 5 we may wse, in place of the
deep lemma 1, the following well-known lemma 2 which can be proved
elementarily.

Lemma 2. If y is a non-zero element of K then
| Xelrk) | < (@ — 1t
where d isthe g.ed. of ¢ and ¢ — 1.
Theorem 5 implies immediately

Corollary. Let d, the g.ed. of ¢ and q — 1, be odd. Then the system
(14) has a non-trivial solution in K if

8 = 21 + max (logy(d — 1), 1)).

University of Turku
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ON THE TRACE OF A POLYNOMIAL OVER A FINITE FIELD

1. Introduction. Let p be a prime and let f(x) be a polynomial of
degree n with integer coefficients. Let I denote the least non-negative residue
of f(z) (mod p). MorpELL [T7] found the estimate

(1) I =np'*logp.

Let K = GF(q) denote the finite field of order ¢ where g = p™. Let
f(£) be a polynomial of degree n over K such that f¥¢"—g + B, for every
polynomial g over K and for every element B of K. Let, moreover, ! denote
the least non-negative trace of f(£) as ¢ ranges over K. It follows from a
result of Cavior's [3] that

L= nap*™*logp
which is a generalization of (1). We now show that, for n > 1,
(2) 1< 2(n—1)p*-"2

In fact, we can prove this result in a more precise form which implies,
furthermore, that [ = 0 if

2log((n—1) (p—1))
logp

The assumption “f is not of the form g’—g -+ B” is essential. For example,
the field GF (4) and the polynomial & —¢& -+ p, where p is a primitive element
of GF(4), satisfy the condition (3), but, however, tr(&—£&+p) =1 for
every element of GI'(4).

Suppose, moreover, that f(0) = 0 and f(—a) = —f(a), for every element
a of K. Let h denote the least non-negative trace of f(£) as & runs through
all the non-zero elements of K. Then, for n > 2,

(4) h< (n—1)p-m2,

It would be possible to prove a result like (4) in a manner similar to (2).
However, we make use of another exponential sum method which is, probably,
easier to generalize for systems of many polynomials.

(3) m >
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It should be noted that in the special case
(5) m =1, f(§) = "

there exist better estimates than (4) (see [4], [5]). For example, it has been
shown that there exists a positive 5 =75(n) sueh that h < p¥*7, provided
that (5) is satisfied and p is large enough. In particular, one may take
7(3) = 0.30, 5(5) = 0.22.

In proving the results (2) and (4), a deep estimate of Carvitz and
Ucarvama [2] for an exponential sum is required. A less precise result
was found by MorpeLL [6]more than thirty years ago. Other useful estimates
are known, for example, in the special ease m =1, f(£&) = af" + BE, a0,

B=E0, (n,k) = 1(see [1]).

2. Preliminary results. Let « be an element of K and let @ and b
be integers. Define the trace of « as

tr(e) =a+ao +...+ ™"

so that tr(a) may be considered as an integer (mod p). Then

(6) atr(a) =tr(ae) (mod p).
Define, furthermore,

(7) ep(a) = ™, ¢(a) = gy(tr(a)).

Then

(8) ep(a+b) = ey(a)ey(d),

©) Too@) ={§ otnerwise.

Moreover (see [2])
(10) Ife(f(E)Jlé(N—l)p”‘”
provided that f cannot be written in the form ¢g’—g+ 8 where ¢ is a

polynomial over K and B is an element of K. Here and hereafter, in the
sum X the variable £ runs through all the elements of K.
£

Let u be an integer such that 0=u= (p—1)/2. Denote U = {0,1,..., u}
and

S(a) =é‘.oe,(ab).
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On the trace of a polynomial over a finite field 5

Then, by (8),
(11) |S(a)]’=“Ee,(ab);‘.e,,(—ac) =;‘. ;‘.e,_.(a(b-—-c)).
b=0 =0 b=0 =0

Since the number of solutions of thé-congruence
b—c=0 (modp), beU, ceU
is equal to » + 1, we have, by (11) and (9),
-1 ®

S]8(@) [ =% 3 Tea(d—e)) =p(u+t1).

=0 b=0c=0 a=0
This implies
(12) p}‘:XIS(w)|3=;c;v('ur.+1)-—(1&.+1)=‘= (u+1)(p—u—1).

a=1

3. Proof of the inequality (2). It is clear that we may prove the
assertion (2) in the following form: There exists an element £ of K such
that —u = tr(f(£)) = w where the integer w satisfies the inequalities

(13) (n—1)pr™—1=u< (n—1)p-"2

We may assume that = (p—1)/2 because (2) is trivial otherwise.
Consider the congruence

(14) tr(f(§)) —y +2=0 (mod p)

where £ €K, ye U, zeU and hence —u=y—z= w. We see, by (9), (8),
(6), (7),and (11), that N, the number of solutions (& y,2) of (14), satisfies
the equations

PN=3 3 3 3e(k(tr(f(&) —y+2))

& p=0 z=0 k=0

=:>5 zeze,(tr(kf(é)))vzz: éuen(k(—yﬂ))

= q(u 1) + 3 Ze(kf(£) SR |
Using (10) and (12), we find, furthermore,
PNZq(ut1)*—(—1)p"* 3 [S(B)|?

(15) =q(u+1)2— (n—1)p™*(u+1) (p—u—1)
= p™2(u+1) ((u+1)p™2— (n—1) (p—u—1)).
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Thus, provided that u satisfies (13), we have
pN= (u+1)2(n—1)p™2 > 0,

Consequently (2) has been proved.

If we putw =0 in (15), we find
N = p™*1(p™?—(n—1) (p—1)).

Hence [ = 0 if
> a—Hip—1)

or if (3) istrue.

4. Proof of the inequality (4). Denote, briefly, (n—1)p"™/? = r. Let

1if 0,
(16) am ={; 5 e,
A if (14) 1 tisfied,
A B ) 8
and
(18) M(u) =3 S S B(4y,2).
§ v=0 2=0
If
(19) M(u) > (r+1)(u+1)
then (14) has a solution (&v,z), where £ K—{0}, yeU, and 2eU, and
consequently, by the condition f(—&) = —f(£), there exists a non-zero

element £ of K such that 0=tr(f(£)) =u. Therefore we have to prove
that u defined by (13) satisfies the inequality (19).

Using the definitions (16), (17), and (18), and the same methods as in
section 3, we find

u u

PH(u) =2 3 3 A@)T G(k(tr(f(€) —y +2))
=S |8(k) | 224 (&) e (k (8))
(20) k=0 £
='S |8(k) [2(r + Se(kf(£)))
k=0 £

= (u+1)20a+1) +:§|S(k)I’(f+§-e(kf(£)))-
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On the trace of a polynomial over a finite field 7

Sinee f(—a) = —f(a), for every element « of K, then
Ze(Rf(8)) = Bo(kf(—4)) = Se(—Hf(£)) = m
and consequently i.‘.e( kf(£)) is real. Therefore, by (10),
r+ 2e(kf(£) Z0.

Hence, by (20), the inequality (19) is true if
(21) (u+1)2(g+r) > (r+1)(u+1)p.

On the other hand, it is easy to see that uw defined by (13) satisfies (21).
Indeed,

(u+1)(g+r) = (n—1) (" +n—1)p > ((n—1)p™2+1)p = (r+1)p.

University of Turku
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ON NON-RESIDUES OF A POLYNOMIAL

1. Introduction. Let p be a prime and let f(z) be a polynomial of
degree d with integer coefficients. Liet & denote the least non-negative non-
residue of f(x) (mod p). In case d = 3 MorpELL [2] found the estimate

k= 0(p(logp)*).
Let [p] be the finite field of residues (mod p). Let, furthermore,
o(x,y) = (f(z)—1(y))/(x—y).
Boumsiert and Davexrorr [1] proved
Theorem A. Let f(x) be a polynomial over [p] of degree d =2, and
suppose that at least one of the irreducible factors of ¢(z,y) over [p] 1s

absolutely irreducible. Then there exists a number C(d) depending only on
d such that, for every large p,

k< C(d)p'*log p.
The purpose of this note is to prove
Theorem B. Suppose that the assumptions of theorem A are satisfied.
Then there exists a number B(d) depending only on d such that, for every

large p,
k< B(d)p'?.

2. Proof of theorem B. Let a be an integer, ¢,(a) = e*™i*? and

M) $i(@) =3 e,(af(9)).
Then (see, for example, [1], lemma 2)
(2) [8:(a) | = (d—1)p",

provided that @ == 0 (mod p).
Let w be an integer such that 0 =u = (p—1)/2. Denote U = {0, 1, ..., u}
and
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3) S(a) =§., é5(—ab).

Then ([3], p. 5)

p-1 o
(4) Eilﬂ(a) [*= (u+1)(p—u—1).
Assume that k(m) is the number of solutions (xz,y) of the congruence

z+y—m=0 (mod p), zelU,yel.
Then
Pl o u
(5) pk(m) =2 3 Ze(t(m—z—y)).
i=0 x=0 y=0
Let 7' be a mapping of [p] into the field of complex numbers. Put
-1
V(t) =T (m)e,(tm).
m=0
Then, by (5),

p 2 T(m)k(m) =2 = T(m)e,(tm) = ey(—tz) = o, (—ty)
(6) m=0 : =0 m=0 =0 ¥=0

=SV @)
=0
Let 7(m) denote the number of solutions of f(x) =m (mod p). Then
p-1 p-1
Si(t) = Zep(tf(z)) = Eof(m)e,(tm).
r=0 m=

We now apply the equation (6), setting 7'(m) = r(m). We then find, by
(1) and (3),

p’Eilr(m)k(m) =:§sl(t) (8(5)? = p(u+1)* + :.s;s,(n (S(1)2
Therefore, by (2) and (4),

IS r(m)k(m) — (w+1)2| = p“(d—l)p”’? 18(8) |

(7)
= (u+1)0(p*?)

where the implied constant depends only on d.
Put

R(1) =’£_’(f(m))=e,(tm).

Let, moreover,
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On non-residues of a polynomial 5

R =max |R(t)| for ¢ ==0 (mod p).
Then ([1], p. 66)
R=0 (;p‘_"f),R(O) =(e+1)p+ O (p'?)

where e is the number of the irreducible factors of ¢(x,y) over [p], which
arve absolutely irreducible, and consequently, by the assumption, e=1. We
now apply the equation (6), setting 7'(m) = (r(m))* Then we find

3 (r(m))*k(m) = p* SR() (S(8))*

(8) =pt(u+1)2R(0) + (v +1)O(R)
= (e+1)(w+1)>+ (u+1)0(p¥?).
Let Nj = Sk(m) where the summation is over all the m’s for which
0=m=p—1 and r(m) = h. Then
d p-1
ENy=2k(m) = (ut+1)2
h=0 m=0
Furthermore, by (7) and (8),
d -1
ShANy =2r(m)k(m) = (u+1)2+ (u+1)0(p"?),
h=1

m=0
d p-1
SN, = 3 (r(m))%(m) = (e +1) (w+1)2+ (u+1)0(p?).
h=1 =0
Multiplying by 1, —1—d* and d* respectively and adding, we deduce
(ef. [1], p. 66) that
No=ed*(u+1)2+ (u+1)0(p"2).

Thus N, > 0 if p is large enough and u= A(d)p"? for a suitable A(d).
Consequently there exists, for every large p, an integer m such that
0=m < 24(d)p"*+2 and r(m) = 0. This proves theorem B.

University of Turku
Turku, Finland
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ON THE SOL\'?’ABILITY OF EQUATIONS
IN INCOMPLETE FINITE FIELDS

1. Introduction. Let K be a finite field of ¢ elements where g = p*, p is
a prime and n a positive integer. Let V denote the set of vectors x = (£,,..., &)
with eoordinates in K. Let, furthermore, A be any subset of V,

A+A={a +a|ach, a.cA}

and |A| the number of elements in A. Suppose that f is a mapping of V
into K and consider the solvability of the equation

(1) f(x) =0, xeA+A,
using exponential sums of type 3 ¢(xf(2) —12) where ¢(a) = e it (@ /p ty(q)
is the absolute trace of «, tz is the sealar product of the vectors t and z, and
in the sum ¥ the variable runs through all the elements of V. One of our
main results is

Theorem 1. The equation (1) 1s solvable if
(2) |A] > (g—1) max |Se(xf(s) —ta)

where the maximum is taken over all the elements t of V and over all the
non-zero elements « of K.

As consequences of this theorem and a slightly more general theorem
(theorem 4) we find a number of results, partly concerning congruences
(mod p) only. As simple examples of them we mention here the following
corollaries of theorems 3 and 7 where f;(x;) denotes a polynomial of degree
¢; = 2 with integer coefficients.

If
(3) hy = 2(c;—1) pt+/2¢ (1=1,...,3)
then the congruence

) 2f(z)) =0 (mod p)

has a solution (&y,...,xs) with 0= z; = h;.
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L, the least non-negative residue of the polyﬂomzd z f j(z;) (mod p), satis-
fies the inequality

(5) 1< 2p@9/2 0T (0;—1).
J=1

The former of these corollaries improves the following result of CHALK'S
[4]: the congruence (4) has a solution (&, ...,x,) with 1=x;=h; if
h; = Cpt1/28 Jog p where C is a suitably large constant depending only on
€1, ..., Cs. It should be noted, however, that MorpELL ([7], [9]) has found
better results in case ¢, =...= ¢, = 2.

The special ease s = 1 of the latter corollary is an improvement of the
result I = ¢,p'/* log p of MorbELL's [8] (see also [10]).

2. Preliminary remarks. Let a = (ai,...,a;) and b= (B;,...,Bs) be
elements of V and « and B elements of K. Define the scalar produet of
a and b as

ab = +...+twBs

The 0-element (0,...,0) of V will be denoted by 0.
Define the trace of « as

tr(a) =ata ., o
so that tr(«) may be considered as an integer (mod p). Define, furthermore,

B{a) — eewitrta)fﬂ_

Then
(6) e(a+B) = e(a)e(B)
which implies that
(7) e(k(a+b)) =e(ka)e(kb)
for every element k of V.
It is known that

_Jqif g=0,
(8) Relam)i= {u it B 0,
and

_Jgtifb=0,
(9) eta) “{0 if b0,

Here and hereafter, in the sums of type b and & the summation is over all
the elements of K and over all the non~zero elements of K, respectively.
Moreover, in the sums of type 3 and 3’ the variable runs through all the
elements of V and throngh all the elements of A, respectively.
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On the solvability of equations in incomplete finite fields 5

Denote
(10) S(a) = z;’e(ab).
Then E
(11) S(0) = |A.

Furthermore, by (7),

|S(a)|? = =e(ab)z’ e(—ae) = '3 e(a(b—e)).
b c b ¢

Consequently, by (9),
(12) s|8(a)|? = 3’5'Se(a(b—e)) = ¢*|A|.
a b ca

3. Lemmas. CaAgrLITZ and UcHIyAMA [2] have proved the deep

Lemma 1. The inequality
Igle(f(é)) | = (e—1)¢*

holds on the assumption that f is a polynomial of degree ¢ over K such that
[ # g"—g + B, for every polynomial g over K and for every element B of K.

The subsequent lemmas ean be proved elementarily.

Lemma 2. If « is a non-zero element of K then

i‘:-f%(rxf”) | = (a—1)g
where d is the g.e.d. of ¢ and q—1.
Lemma 3. If a and B are non-zero elements of K then
I?-‘-’(afe +BE) | =d g
where d is the g.e.d. of ¢ and q—1.

The proof of lemma 2 is well-known (for the special case ¢ = p, see [11],
p. 47). AkuLINICEV [1] has proved lemma 3 in case ¢ = p; we give now a
slightly different proof for the general case.

Denote

g = fe(aé“rﬁf)-
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Then
IT(@)]* = Ee(mf‘ + B§) ie(—ﬂﬂ‘—ﬁn) = -;-‘%;e(a(«f‘—nf) +B(§—9))
and henece, by (8),
(13) S|T(B)|* = 22e(a(é—1°)) Ze(B(é—n)) = ¢~
B £ B
Let Y = {ye K | ° = 1}. Then | Y| = d. Moreover
T(pn) = ;‘-‘-8(«5“ + Bné) = ?e(«(né)‘ + Bné) = 2{8(a€° +BL) =T(B),
for every element 5 of Y. Therefore, by (13),
AT P == |T(B*=2|T(»)|* = ¢,
ne¥ Y

for every non-zero element B of K. This implies lemma 3.

4, Proof of theorem 1. The equation (1) is solvable if and only if the
equation

(14) f(x+y) =0, xeA, yecA

is solvable. Let M be the number of solutions of the equation (14). Using (8),
we see that

M= q“i’i’-’%é(«f(x"'}'))-

This implies, by (9) and (10),
M =qg?*'33c(xf(2))2'Ze(t(x+y—2))
(15) Kz xy t
= 12X (8(1))" Ze(uf(3) hE).
Picking out the term with x = 0, we get furthermore, by (9) and (11),
(16) M= g A+ SS(1)" 3 Te(xf (2) —ta).
Combining this with (12), we find
M=q|Al*—q(¢—1)|A|m = ¢ |A| (|A] —(g—1)m)

where

(17) m = max |Se(xf (2) —tz)].

Consequently, by (2), M > 0. Thus theorem 1 has been proved.
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5. Consequences of theorem 1. Let A4; be a subset of K and let f;(&) be
a polynomial of degree c¢; (¢; =2, ¢; is not divisible by p) over K. By
theorem 1, the equation

(18) Elf;(«ff) =0, &ed; +4;

is solvable if
Jf1'[ [4;] > (g—1)m.
Now 7

m = max [Ze(x 2 f3(£) —= d))|

t, K20

where t = (7y,...,7s) and 2= (&,...,&). Furthermore, by (6) and lem-
ma 1,

& & 8

|Ze(x21;(&) — 2 7;&) | = W [Zexfi () —idy) |
z J=1 =1 J=t Iy
8

=q** 10 (¢;—1),
=1
for every t and for every non-zero k. Consequently we have

Theorem 2. The equation (18) is solvable if

I |4;] > (q—l)q”’J_Hl(c;—l)-

Theorem 2 implies immediately

Corollary 1. The equation (18) is solvable if
| 4] = (e;—1)qtes272 (F=1,..-78).

If we put |4;] = g in theorem 2, we get the following well-known result
(for the special case f; (&) = y;&j, see, for example, [6]).

Corollary 2. The equation

j%lf;{s;) =0

has a solution in K if
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Consider now the congruence
(19) }:f;(x_s)EO (mod p), Oéx;éh;
=1

where f;(z;) is a polynomial of degree ¢; =2 with integer coefficients and
h; is < p. Since ¢ =a (mod p) for every integer @, we may suppose that
¢; < p. If we choose 4; = {0,1,..., [k;j/2]} then 2|4;| > h; and A4;+ 4;
is a subset of {0,1,...,k;}. Hence we have the following consequence of
theorem 2.

Theorem 3. The congruence (19) is solvable if

IMh; =2 (p—1)p** 11 (¢;—1).
Je

=1
Theorem 3 implies
Corollary. The congruence (19) is solvable if the inequality (3) is true.

6. Theorem 4 and its consequences. If ¢; =1 then it is possible that
the sum

;Se(xfj(if)—ff‘:f)

doesn’t satisfy the assumptions of lemma 1. Therefore the restriction ¢; =2
is essential in the proof of theorem 2.
We now extend theorem 1 such that we consider the equation

(20) f(8)—£=0, XxecA+A, fecd+ A
where A is a subset of K. This equation is solvable if and only if the equation
(21) f(x+y)—&—3=0, XeA, yeA, fe4, ned

is solvable. Using the same methods as in section 4, we observe that N, the
number of solutions of the equation (21), satisfies the subsequent equations.
N=q'¥>Se(x(f(x +y)—£&—n))
X ¥ &m0k

= YYISe(t(X+y—2)) XY e(x(f(2) —€—n))
xyzt £ K

= " 3(80(x)) 2 (S(8))? e (xf (5) —ta)

where the summation in the sums of type ' is over all the elements of A,
[}
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On the solvability of equations in incomplete finite fields 9

(22) So(x) = 3 e(—xa),

and therefore (ef. the equations (11) and (12))
(23) So(0) = |4/, KE“ISo(x)Iz = |4|(¢g—|4]).

Hence
N =g A4 —g T |S(1)]22 [So(w) |

=q*|A|jA|(|A][A] —(g—]|A])m)
where m is defined by (17). Consequently we find

Theorem 4. The equation (20) is solvable if

|[Al[4] > (q—IAI)rtﬂg Ife(xf{Z)—tx) |

If we put A = {0}, we see that theorem 1 follows from theorem 4. Using
the same methods as in the proof of theorem 2, we observe, furthermore, that
theorem 4 implies

Theorem 5. The equation
élf;(e,)—gm =0, fedit A (i=1,...,5+1)
1s solvable if
I |4| > (g—|4ua )" T (1),
If we take 4, = ... =4, = K, we find

Theorem 6. The equation

j_z fi(§5) —&a =0, &€ K, fnedsyy+4,,
is solvable if

&
| Asi| gqt%aua‘in (es—1).
=1

In theorem 6 as well as in theorem 7 the eondition ¢; is not divisible
by p” may be replaced by the condition ”f; is not of the form ¢"—g+ g
where g is a polynomial over K and B is an element of K” (for a proof,
ef. [10]). It should be noted, too, that the consideration of the special case
A, = {0} shows that theorem 6 implies corollary 2 of theorem 2.

87




10 ArMO TIETAVAINEN

Liet u be a non-negative integer. Denote
Apy = {Ee K | 0=tr(¢) = u).
Then |As| = (w+1)p™* and-.

Agnt A4, ={{eK | 0=1ir(s) = 21&}.
Assume now that

pEIO T (¢j—1) —1 = u < p@ /21T (;—1).
=1 J=1

Then, by theorem 6, there exist elements &, ..., & of K such that
0=tr(2f(&)) =2u
J=1

We write this result in the following form.

Theorem T. The least non-negative trace of the polynmmal 2 fi(&) 1s
< gp\ErEs ;H1 (c;—1).

Theorem 7 is an extension for the equation (2) of [10] ; this result was
an impmvemen‘t for a result of Cavior's [3]. The special case q = p of
theorem 7 can be written as

Corollary. 1, the least mon-negative residue of the polynomial 2 fi(zs)
(mod p), satisfies the imequality (5).

7. Some further results. In the special case

f(x) = ~w§:—?

=1

we can prove the following result.

Theorem 8. Let d be the g.ed. of ¢ and q—1. Suppose that d—1 is
equal to aq'*>/* where a < 1. Then the equation

(24) Syiti= v fedtA,
j=1

where yy ...y, 70, is solvable if
lAl g (1—0) ~1d—1fsqta+!.]fs'

This theorem, in the proof of which we do not use the deep lemma 1, gives
better results than eorollary 1 of theorem 2 if
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g < (1—a)?d(d—1)%
Proof of theorem 8. We have now, by (15),

M= g3 e(x(S ysl5 —v)) ¥ Te(t(x+y—1))
Kz j=1 xi g t

&
= q*1Se(—xy) M3 2 E3e(r(& + 0 — &) +rvili)
K j=1 g_( 13, t, 'rj

= q* S e(—xy) 12 (So(—1))* e (rsdi — ki)
= Tj C,

where S, is defined by (22). Picking out the term with x = 0, we get further-
more, by (23) and lemma 2,

M=qt|A]»+
9 208(—«7) jIT (0;(a—1)g"*|A|* + Eo(su(—n) )’{E e(xyili —7i&s))
K =1 ‘.I'ji 9

where 0; is a complex number such that |6;| = 1. This implies, by (23) and
lemma 3,

M g q—I IAlzs_q-(nzn'z(q_l) |A1‘( (d—l] [Al e d‘”"q‘“(q—]Al))‘
> g A (|A]*—qe 2 ((d—1) |A] + d2g%2)*).
Consequently M > 0 if

IAl ‘.‘==- q{u-suzs( (d—l) |A| - d-uzqs;z)
or if
d-x;zq[hlns

1—(d—1)qt=->/e
Thus theorem 8 has been proved.

4]

v

= (1—a)-td-V2q++)/s,

Theorem 8 is an analogy of corollary 1 of theorem 2. As an analogy of
the special case s =1 of theorem 7 we get

Theorem 9. Let « and B be non-zero elements of K. Then the least non-
negative trace of the polynomial of® + B¢ is < 2d7*p where d is the g.c.d.
of ¢ and q—1.

Proof. Define the integer u by the inequalities
(25) dVip—1=u<d*p.

By [10], the congruence
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On pairs of additive equations
1. Consider the problem of the existence of a non-singular solution for
two congruences of additive type, say
f=axf +...+ a2l =0 (modp),
(1)
g="buaf +...+ bzl =0 (modyp),

where p is a prime. DavenrorT and Lewis [1] have proved the following
result.

Let f, g be additive forms, as in (1), where a;, b; are never both=0
(mod p) and where p does not divide k. Suppose that
n=2k+1
and that
rank(If +mg)=k+1

for all I, m not both=0 (mod p). Then the congruences (1) have a non-
singular solution.

They asked whether or not this theorem remains true for two equations
of additive type in general finite fields. The purpose of this note is to show
that it remains true.

2. Let K be the finite field of p? elements. We state three lemmas which
deal with additive equations in K.

LeymMa 1. Let

F(él; seny Em) =ﬁ'l§f s +0-'m£:ls

where ay, . . ., ay are non-zero elements of K, k divides p*— 1 and (p'—1)/k
does not divide p*—1 for 1 =v < d. Then if m =k the number of distinct
non-zero elements of K represented by F is at least m(p®—1) /k.

This lemma is an extension of lemma 1 of [1].
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4 AiIM0o TIETAVAINEN

Proof of lemma 1 (ef. [2]). Let A be a subset of K. Define
|A | = the number of elements in A4,
A*={ned |90},
HA)={n|at+npedV acAd).

Clearly H(A) is an additive subgroup of K.
Define, moreover,

K,={n|n=¢, £cK)},

Qo= Qular,...,a0)= {‘? | n= Z “jf?s‘fiGK}-

-

If 7 is in Qi so ist the set 7K . Hence Qi is the union of some cosets of the
multiplicative group K* modulo Kj . Thus there is an integer I, such that

| Qu | = lo(p?—1)/k.
Sinee [, = 1, our assertion can be now written in the following form:
it =10 (1 T, 1)

Clearly Loy = b If Lipss =l then awy; € H(Qy). Hence H(Q,,)={0} and
therefore |H(Qw)|=p® where v=1. If 5 is in (H(Q,))* so is the set
7Ky . Hence (H(Q.,))* is the union of some cosets of the multiplicative group
K* modulo Kjand consequently (p?—1)/k divides | (H(Qy))* |= p*—1.
Therefore, by the assumptions of the lemma, v =d and hence H(Q,)= K.
Since 0 € Q,, it follows that H(Q,) is a subset of Q.. Consequently Q,,= K
and hence l,, = k. Thus lp,; = min(1 + 1, k).

Lemya 2. Let k be a factor of p?—1. Let G, H be any forms of degree
k over K in gy, ...,7ns, where s > k. Let v, ..., y. be distinet non-zero ele-
ments of K where

u > (2k—s) (p*—1) /k.
Then there exist u,, . . ., ns, not all zero, such that

G(?}‘l,---:ﬂa)zo
and
H(gyeeoyms) =0 or v
for some 1.

Lemma 2 is an immediate extension of lemma 2 of [1].
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On pairs of additive equations B

Lemma 3. Let k be a factor of p®—1. Let v be a factor of d such that
p*— 1 is divisible by (p*—1) /k. Then the equations

yns ...t ymf =0, 8F +...+ 8% =0
have a non-trivial solution in K if
2dk(p®—1)
= el sty
=1+ T

This lemma follows from theorem 5 of [3].

3. We now state

ThrorREM. Let
f=af +...+ enbr =0,
G=Bifr +...+Butr =0

be additive equations over K. Suppose that p does not divide k and that ai, B
are never both = 0. Suppose, furthermore, that

n=2k+1

(2)

and that

rank(Af +pg) =k +1
for all X, p not both = 0. Then the equations (2) have a non-singular solution
in K.

Proof. We ean suppose without loss of generality that % divides p?— 1.
Assume that the equations (2) have singular solutions only. As DAVENPORT
and Lewis ([1], p. 342) have shown, instead of considering (2) we then, by
permuting the variables and by interchanging f, g if necessary, may consider
the pair
@) a1£’;f+...+a.-£‘: +71q§+...+y,q’: =0,

s + ...+ 8. =0,

where all the «; and all the §; are non-zero and the equation
(4) e+ et =0
has a non-trivial solution. Furthermore, we have

(5) s=k+1.
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6 AriMo TIETAVAINEN

Case 1. (p®—1)/k does not divide p*—1 for 1=wv < d. The proof of
this case is similar to that of the theorem of Davexrorr and Lewis. However,
lemmas 1 and 2 of the present paper are used instead of their lemmas 1 and 2.

Case 2. There exists an integer v such that 1=v <d and p'—1 is
divisible by (p?—1)/k. Now d=2 and therefore p?=4. Furthermore,
we can assume that v is a divisor of d and consequently d = 2v, for
(p*—1, p*—1)=p>? —1 and therefore (p*—1)/k, which is a common
divisor of p* —1 and p” — 1, is a divisor of p@®® —1,

It ean be shown that the equations (3) have a non-singular solution if the
equations

arky + vy +...+yms =0,

(6)
8113:‘ =i +8313§ =0

have a non-trivial solution. Indeed, if (£7, 'r,t;, ...,7s) is a non-trivial solution
of (6) and (£7,...,£7) is a non-trivial solution of (4), then the equations
(3) have the non-singular solution (0,...,0, AR I 1;',) in case & F 0
and the non-singular solution {f;’, s i 'q; e q: ) in case =0

Suppose firstly that p¢ = 4. Case k = 1 is excluded, whence we may assume
that &k =3. Since s =4, the equations (6) have, by lemma 3, a non-trivial
solution.

Suppose now that p* > 4. If p* = 2 then

(pP—1)/(p*—1)=21—1 > 2d = 2d/v,
since d = 3. If p* = 3 then
(pP—1)/(p*—1)=1+p"+...+p**=1+3(d/v—1) =2d/v,
because d = 2v. Hence, in every case,
v(p'—1)=2d(p*—1)
and consequently, by (5),

| g St L Sl
=8 viphe=1]

This inequality implies, by lemma 3, that the equations (6) have a non-trivial
solution.

UnN1veERsiTY OF TURKU
Turky, FINLAND
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On diagonal forms over finite fields

1. Introduction. Crowra, MANN and StrRaus ([1], theorem 3) have proved

TuroreM A. Let p be a prime. Let a, . ..a,=-0 (mod p) and let k divide
p—1, k<(p—1)/2. Then the form ax* + ...+ anzk represents either all the
residues or at least (2n—1) (p—1)/k + 1 residues (mod p).

We now prove the following extension of this theorem.

Turorem 1. Let K be the finite field of p® elements where p is an odd
prime. Suppose that a,,...,a, are nonzero elements of K, k divides p*—1,
(p*—1) /k does not divide p*—1 for 1=v<d, and k<(p’—1)/2. Then the
form ex® + ...+ auxt represents either all the elements or at least (2n—1) -
(p'—1)/k + 1 elements of K.

In seetion 5 we shall show that the assumptions "(p?—1) /k does not divide
p'—1 for 1=v<d” and "k < (p’—1)/2” are essential. On the other hand,
it is possible that the assumption “p is edd” is unnecessary.

Combining theorem 1 with some results of [8], we find

TuroreM 2. Let K be the finite field of p? elements where p is an arbitrary
prime. Suppose that the case k =p—1, d =1 is excluded and that

(1) n=(k+ 3)/2.
Then the equation
(2) art + ...t ek =0
has a non-trivial solution in K.
It is necessary to exelude the case k = p—1, d = 1. Indeed, the equation
gh 2%+ afie=1)

has only the trivial solution in GF(p), for every prime p.

1t should be noted that theorem 2 improves the following result of LEwis
[5].

TuroreM B. Let K be the finite field of p elements where p is a prime
and =5. Suppose that p'—1 does not divide k and that
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4 AiMo TIETAVAINEN

n=(k+5)/(2—3/p).
Then the equation (2) has a non-trivial solution in K.

2. Preliminary results. Let K = GF(p?) be the finite field of p? elements
where p is a prime. Let A be a subset of K. Define

| A | = the cardinality of 4,
A*={n€e A | 950},
H(A)={neK | A+n=A4},
K,={n | n=¢, £ K},

w

Qo= Qulay...,a)={n | 1= 2 a;t, { € K}

i=1

where k is a factor of p?—1. If H(A)3{0}, A is said to be periodie. If
H(A)= {0}, A is aperiodie. Clearly H(A) is an additive subgroup of K, and
A is the union of some additive cosets of K modulo H (A). Furthermore (see
[5]), there is an integer [, such that

|@2 | = lo(p*—1) /k.

We state now seven lemmas which will be used in the following sections.

LeMMA 1. If ay, ..., & are non-zero elements of K and (p*—1)/k does
not divide p*—1 for 1 =v < d then
Iwa-lgmjn(l + le; k}'

For a proof, see [9], proof of lemma 1. For some special cases of lemma 1,
see [2], lemma 1, and [7].

LemMA 2. If k=(p"—1)/2 then 2, a=0.
aeQp

Proof. Since k=(p°—1)/2, |K*|=2. Therefore there exists an element

B of K*such that 1. Clearly BQw = Qu. Let 2 a= 3. Then
@eQuw
py=2Ba=2Ly=3
*EQup YeQuw

and henece § = 0.

Lemya 3. If A is a periodic subset of K and p > 2, then 2. «=0.

aed

Proof. Sinece H(A) is an additive subgroup of K, H(A)={0}, and

p>2, then 2H(A) = H(A). Let 2. a=y. Then

ae H(A)

102



On diagonal forms over finite fields 5

2y=22= 2 p=y
oeH(A) feH(A)

and hence y=0. Let B=8-+H(A) be an additive coset of K modulo H(A4).
Then :

 2a=|H(A) |8+ ) a=0,

ae B ae H(A)
because p divides |H (A)|. Since A is the union of some additive cosets of
K modulo H(A), this equation implies lemma 3.

LemMA 4. Suppose that (p*—1)/k does not divide p*—1 for 1=v<d
and that A is a non-empty periodic subset of K such that aAd = A for every
element a of K* . Then A = K.

Proof. Since A is periodie, H(A)={0} and therefore |H (A)|=p® where
v=1. If B € (H(A))* then et A=fatad=a(f+4)=ad=A4 for
every element a of K*and therefore SK* is a subset of (H(A4))* Hence
(H(A))* is the union of some cosets of the multiplicative group K* modulo
K* and consequently (p?—1)/k divides |(H (A))*|= p’— 1. Therefore, by
the assumptions of the lemma, v=d and hence H(A) = K. Consequently
A=K,

Levmma 5. Let A and B be subsets of K satisfying
|[A+B|=|4|+ |B|—2.
Then A + B is periodic.
Lemma 5 is due to KNESER [4].
Lemma 6. Let A and B be subsets of K such that
|[A+B|=|4|+ |B|—1.

Let vy, . - ., y¢ denote all the elements in A + B having only one representation
as yj=a; +B; (aj €4,B; €B).

Assertion:

(1) If t=0 then A+ B 1is either periodic or can be made periodic by
adding one element. :

(2) If t=1 then A+ B is either periodic or can be made periodic by
deleting one element. b

(8) If t=3 then either ay=::+=ay or B.="'-+= B;. Moreover, every
element in A + B, other than y;, has at least t representations as the sum of
an element of A and an element of B.

This lemma is a special case of theorem 6. 1. of [3].
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LemMa 7. Let v be a factor of d such that p*—1 is divisible by
(p*—1)/k. Then the equation (2) has a non-trivial solution in K if

ngl+_.d.{‘_(.?£:l)__
=3 v(p?—1)

Lemma 7 follows from theorem 5 of [8].

3. Proof of theorem 1. Since I, =1, the assertion can be written in the
following form:

(3) I =i (2 Y L I =1, B i )

By lemma 1, l;,;=min(1+1,, k). Suppose that l,,, =1+ [,. We shall say
(see [5]) that an element y of .., has a unique representation in Q,,, if it
has only one representation as y=a+ B with a€ Q;, B €a, K, Let ¢t be
the number of the elements in @, which have unique representations in
Q1. If ¥ has a unique representation in @,., then so does every element in
the set yK#*. Hence t=1 (mod m) if 0 has only the trivial representation in
@1, and =0 (mod m) if 0 has at least one non-trivial representation in
Q..:. Here and hereafter m = (p?—1) /k.

Case 1. Q.. 18 periodic, Then I, =k by lemma 4. Hence the assertion
(3) is true in this ease.

Case 2. Q. 1s aperiodic and t = 0. Then, by lemma 6, )., can be made
periodie by adding one element. Let B be this element. Then

=P

ae
qsﬂ

by lemma 3. On the other hand,

2a=0

XEQs:1

by lemma 2. Henee g = 0. This is impossible, since 0 € Q...

Case 3. Qu. 1s aperiodic and t = 1. Then, by lemma 6, ,., can be made
periodic by deleting one element. By lemma 3 and lemma 2, this element is 0.
Therefore Q¥ is periodic. This is impossible by lemma 4.

Case 4. . 1s aperiodic and £ = 2. This case is impossible, since m > 2.

Case 5. Q... 1s aperiodic and t=3. Let 8,,...,8;, be the uniquely
represented elements in ... Then, by lemma 6, either there exists some unique

element B of Q, such that
(4) 8 =B +ayt (i=1,...,1),

or there exists some unique element +* of K, such that
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(5) 8f=ﬁj+al+ﬂ}‘ (j=11--'st)

where the 8; are elements of Q,.
Suppose that (4) holds. Let ¢ be==0, 1. Then £8; has the unique repre-
sentation :
£8; = B + api (yje)*

in Q... Consequently £%8; is one of the elements §8,,...,8; and therefore
&8 =p. Hence §=0. It follows from this that the set U of the uniquely
represented elements in Q,., i8 @s1K, Or @y K*. If U = a,..K, then (see [5])
Q* is periodic and therefore, by lemma 4, Q¥ = K which is an impossibility.
— U =a,K? then

(Aadtr ¢n+1K: =Q,

and ‘hence, by lemma 5, @, is periodic. Consequently, by lemma 4, @, = K.
Hence Q,.; = K which is an impossibility, because @,., is aperiodie,
Suppose now that (5) holds. Then the product £8;, where =0, 1, has
the unique representation
€48 = "B + asuety*

in Q,,; and therefore a,,.e*y* = e;.1y*. Consequently y = 0. If 0 has the trivial
representation only, then, by [5], there exists a non-zero element « of K such
that the difference set Q.. \ aK, is periodie. This is impossible by lemma 4.
Hence there exists a positive integer g such that ¢ = gm, g =1,. Now, by lemma
6, those elements in Q,,; not uniquely represented in @,., have at least gm
representations. As there are (1 + I,m)(1+ m) sums of an element of @, and
an element of a,,,H,, we get

1+ @A+l —g)m)gm+gm=(1+1Im)(1l+m)
or
m2(g—1—m*) (g—1,—m*)=0.

Since g <1, +m™, we have the inequality g=1+ m™. Hence g = 1. Suppose
that oK * is the subset of @, which consists of exactly those elements which
have a unique representation in @,.,. Then

Q.+ a.,.;K: =@ \ aK:

and consequently, by lemma 5, Q... \ eK* is periodie. This is impossible by
lemma 4,

Now we have shown that the equation l,,, =1+1, implies the equation
lss1 = k. Hence the inequality (3) is true.

4. Proof of theorem 2. We may assume that the coefficients ey, ..., an
are non-zero, for if a; =0, then the equation (2) has the non-trivial solution
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zj=1, &, =0 (k==j). Furthermore, we can assume that k divides p?—1, for
the equation * = a is soluble if and only if the equation y%*» "~V = ¢ is soluble.
Case 1. Suppose that all the assumptions of theorem 1 are satisfied. Then,
by theorem 1,
F(@,. foytwa) = a@tt oo F auast

represents all the elements of K. In particular, there exist elements &, ..., &
in K suech that F(&,..., 1) = —ay Hence the equation (2) has the non-
trivial solution (&, ..., &1, 1).

Case 2. Suppose that there exists an integer v such that 1=v<d and
p*—1 is divisible by (p®—1)/k. Now d=2 and therefore p?=4. Furthermore
(see [9]), we can assume that v is a divisor of d and consequently d=2uv.

Suppose firstly that p? =4. Case k = 1 is excluded, whence we may assume
that £ =3. Sinece n=3, the equation (2) has, by lemma 7, a non-trivial
solution in K.

Suppose now that p? > 4. If p* = 2 then

(p*—1)/(p*—1)=21—1>2d = 2d/v
since d=3. If p*=3 then _
(p!—1)/(p*—1)=1+p*+...+p*=1++3(d/v—1)=2d/v
beecause d=2v. Hence, in every case,
v(p'—1)=2d(p*'—1)

and consequently, by (1),
3 3 dk(p*'—1)

n=— :
2 v(p?*—1)

This inequality implies, by lemma 7, that the equation (2) has a non-trivial
solution in K.

Case 3. Suppose p=2. Then—1 is a kth power in K and therefore (2)
is a so-called A-equation (see [8]). Using the results of the sections 18, 21 and
22 of [8], we can show, by means of some simple numerical ecaleulations, that
the equation (2) has a non-trivial solution in this case, too.

Case 4. Suppose k=(p’—1)/2. If k= (p*—1)/2 then —1 is a kth
power in K and the consideration is similar to that of case 3. If k> (p*—1)/2
then k = p?—1, d > 1, and hence (p?—1)/k is a divisor of p—1. Since d > 1,
this ease is therefore a special case of case 2.

Thus theorem 2 has been proved.

5, Two remarks about the assumptions of theorem 1. If there exists an
integer v such that 1=v <d and p*—1 is divisible by (p®—1)/k, theorem 1
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is false, This may be seen as follows (ef. [2], p. 344). We ean assume (see
section 4) that v is a factor of d. Since p*—1 is divisible by (p?—1)/k,
(p*—1)/(p*—1) is a faetor of k. Therefore the kth powers of the elements
of K satisfy the equation y”" =y and consequently they belong to the finite
field GF (p"). Henee the form

R

represents elements of GF (p”) only, and this is true however large n may be.

The assumption ”k < (p?—1)/2" also is necessary in theorem 1. This may
be seen as follows. Let K = GF(p), p>5. Take k= (p—1)/2, so that the
values of #* are 0, 1 and —1. Then the form #* + z% represents 5 elements
only.
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On the distribution of the residues of a polynomial

Let L denote the set of points z = (x,,...,x,) with integral coordinates in
Buklidean n-space. For any odd prime p, let C=C(p) be the set of points of L
in the cube 0=u; <p (1=1,2,...,n). Suppose that f (x) is any polynomial of
degree d in z, ..., s, with integral coefficients which does not vanish identi-
cally (mod p). For any real number a, let {a} be the fractional part of a and
[la| the distance from a to the neavest integer. WiLLiams [3] showed that

’Ec{f (x)/p} = 4p™ + O (p™* logp),

as p—> o, where the constant implied in the 0-symbol depends only upon »
and d. The purpose of this note is to prove the following result, in the error
term of which the logarithm is omitted.

THEOREM.
‘fvllf(x)/p | = 1p™ + 0 (p™),

as p— o, where the implied constant depends only upon n and d.

Proof. Liet t be an integer, e(#) = exp(2xit/p) and
S, (t) =‘Ef(—tf(m)}.
Then (see [2])
1) [S:() |=kp™,
provided that t = 0 (mod p). Here the constant & depends only upon = and d.

Denote w = (p—1)/2 and
S(t) ==Ze(tu).

It is well known that
p-1

(2) t}‘. [S ()| < plogp.
=1

Furthermore (see [1])
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) I8 [F=4*—1).

Assume that I(m) is the number of solutions (u, v) of the congruence
utv—m=0 (modp), I=u=w, 1=Sv=1w.

Then
Pp-1 w 1w -1
plim)==2 = ZEe(t(utv—m))= = 8(t)(S(t)—1)e(—tm)
=0

=0 =0 v=1

and, on the other hand, I(m) = p|m/p |. Therefore

P3| f(@)/p] = p 21 (2) = 3 (1) (SO—DS(0).

zreC x
Sinee S(0)=3(p +1), 8,(0)=p", we find, by (1),

-1

|2 F@)/p|—1@—Dp™* | Shp™= 2 (1S | *+|S®)]),

from which the theorem follows in view of the results (2) and (3).
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On a homogeneous congruence of odd degree

1. Let p be a prime and let & be an odd positive integer. Consider the
congruence

(1) ,Za;xf =0 (mod p)

where the a; are given integers. Let y* (k) be the least integer s such that the
‘congruence (1) has a non-trivial solution for every prime p and for all ;. Let

H’ = lim sup (y*(k)/log:k)

where the lim sup is taken over odd k& tending to oo. Crowra proved in [2]
that H’< o and later in [3] with SmiMUrA that 1=H’=2. NortoN [4]

established the result H’'= -;L The purpose of this note is to show that H” = 1.
In faet, we shall prove the following slightly stronger result.

TueoreM. The congruence (1) has a non-trivial solution if
(2) 28> s + s%k.
This theorem implies

CoroLLARY 1. For each e >0, there exists a k,(e) such that
y* (k) <(1+ e)log.k
for all odd k > Fkq(e).

Hence H’=1. Because, by [3], H’=1, we have
CoroLLARY 2. H’=1.

2. The proof of the theorem is based on a method used in [5] and on the
following lemma,
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LemMA. Let the real numbers S(h, j), 1=h=p—1, 1=j=s, be such that

@) S(h, j)=—r (r=0),
e -1 a
i 2 80 i)=0,
h=1
8 p-1 ;
(dif) > T (8(h i) =A.
j=1 h=1
Then
(3) ’f [ ("+S(h,j)):=’(P—1)r'_.%sra~zA_
k=1 j=1

Proof. Case r=0 is trivial. Suppose that »>0. Denote T(h,j) =
718 (h, j). Let 8, be a permutation of the set {1, 2, ..., s} such that

—I1=T(h,H((1))=...=T(h, 8i(0))S0<T(h, S(t+1))=. . .=T(h, 8,(s)).
Then

p-1 B

3 M +8Gk =2 [ a+Tw, i)

=1 j=1 h=1 j=1

P11 h t ]

=X [NA+7083G)) [1 A+ T03kK)))
h=1 f=1 k=th+1
p1 * s

=2 A+ ZT(h &) A+ 2 T(h 8i(k)))

h=1 =1 k:ihu

L

-1

1 A 8
T(h,j)+ 2. 2T(h,8:(j)) 2 T(h, 8u(k))

h=1 j=1 ket 41

=p—1+ 2
¥

L™

-

8 p-1 8 2

Zp—1+12 Tsti—2 T (ZI80ki)])

i=1 b= h=1 ' j=1

p-1
Here Y S(h, j)=0, by (i), and
h=1

p-1, 8

Z(ZIsthi)l)'ss T X I8hi)|2=s4,
h=1 j=1

e

by (iii). Hence we have the inequality (3).
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On a homogeneous congruence of odd degree 5

3. Proof of Theorem. Let @ be an integer, ¢,(a) = ¢*7i*/? and

P-1
S(a)= T ep(ac®).
&0
It has been shown in [5], pp. 5 and 6, that the congruence (1) has a non-
trivial solution if

8

(p+r)+ 3 [1(r+8(has))>p(r+1)*

A
where r is a real number such that S(ha;)=—r, for every h and j. Because
we can assume that k| (p—1) and a; = 0 (mod p), for every j, we have (see,
for example, [1], p. 18)

-1 p-1
2 8(haj)=0, X (S(haj))* = (k—1) (p—1)p.
h=1 h=1

Therefore S(ha;) satisfies the assumptions of Lemma with A =
$(k—1) (p—1)p. Consequently
p-1 8

Z 1 (r+8(ha)=(p—1)r'— I sr2(k—1) (p—1)p.

k=1 J=1
Hence the congruence (1) has a non- trivial solution if

) (p+1)* +(p—1)r*3(r— L s (k—1)p) > p(r + 1)

Because ¢,(0)=1, then S(ha;)=2—p, for every h and j, and we can put
r = p—2. Then (4) takes the form

’ e Neiry o Lok 1y(n—9)-
()  2+(1—o2g) p—2— s (k—1) (—2)7p) >p.
Since we can assume, by [2] and our assumption (2), that p > s+ sk, and,
furthermore, that s=3 and k=3 (in the excluded cases our theorem is well-
known), the left side of the inequality (5) is >
8 St s—1 S 8 —g R
2 +(1 S=T) (k) > 20+ p—s—sh.

Hence (4) is true if 2° > s + s°k.
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On the nonexistence of perfect 4-Hamming-error-correcting codes

1. Introduetion. Let K = (?F(g) be the finite field of g = p elements
where p is a prime. Let ¥ be the vector space K*. For a € ¥V, let |al|
be the number of nonzero components of a. The sphere of centre a and
radius e is defined as the set

B(a,e) ={x€V||x—al <e}.
A subset C' of V is called a perfect (or close-packed) e-(Hamming-)error-
correcting code if
(U B@,e =V

a€EC

and
(i)a€C, beC, a # b implies B(a,e)N B(b,e) =9 .

The dimension # of ¥V is called the block length of C.

A perfect e-error-correcting code of block length » is called trivial if
e=mn (one-word code) orif g =2 and n =2¢ 4 1 (repetition code of
two words). For every ¢, there is an infinity of nontrivial perfect 1-error-
correcting codes. Nontrivial perfect e-error-correcting codes with e > 1
are known only for e=2,¢=3,a=11,ande=3,¢9=2,n =23,
Both of them are called Golay codes (see [3], pp. 302—309). It was proved
in 1968 or earlier (see [4], [1], [2] and references in [1]) that there are no
unknown perfect 2-error-correcting codes for ¢ = 9. In his paper [5] van
Lint proved the nonexistence of unknown perfect e-error-correcting codes
in cases e = 2 and e = 3 forall ¢g. The purpose of this note is to extend
that result to the case that e — 4. We shall hence prove the following

Theorem, There are no nontrivial perfect 4-error-correcting codes over
finite fields.

2. Lemma. In the proof of this theorem we shall use the following

Lemma. If a nontrivial perfect e-error-correcling code of block length n
over GF(q) exists then the polynomial
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(1) P =3 (0217 ) @,

i=0 i

where
G):&é—n“.@~i+nﬁu
has e distinct integral zeros among 1,2, ..., 7 — 1.

This lemma, which is due to Lloyd [6]in case ¢ = 2, is here in the form
in which van Lint gave it in [5].

3. Proof of Theorem. Assume the contrary: there exists a nontrivial
perfect 4-error-correcting code with block length n over GF(g). Because
the case ¢ = 2 has been considered by van Lint (see [5], p. 399) and be-
cause the trivial perfect codes are excluded, we may suppose that ¢ = 3
and n = 5.

By the equation (1)

24g4P,(z) = 28 — A + A® — A + A,

where
(2) Ay =4n — 6 — (4n — 16)g*
and
Loy )
(3) A, = 244;—4‘20(4 ta ‘.) (g— 1" .

On the other hand, van Lint ([5], the eq. (2.2)) has shown that there exists
a positive integer k such that

I ™
(¥ (a2 u=we=g.
Furthermore, we know that
(5) Gttt a=4,
and
(6) TyTgTgTy = Ay

where z,,%,,2, and 2z, (v, <z < 73 < z,) are the zeros of Py(z).
A combination of the equations (6), (3), (4) and ¢ = p" gives the result

(7) 2,2y, = 24p™
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In the rest of this paper we shall show, by means of some easy but
rather lengthy calculations, that the number X = (z, + 2, -} 23 + 2,)/,
is, by (7), considerably smaller than 4 and, moreover, that this result
with the inequality #;, =n — 1 and with the equations (5) and (2) leads
to a contradiction. -

If p=2, one of the numbers z, say z;, is of the form 3-2% the
others are powers of 2, If j=1, X =381/16;if j=2, X <17/8; if
j=3, X=5/2; if j=4, X =13/6. Consequently X = 5/2 for
p = 2. Hence
(8) A, <50 —1)2.

On the other hand, it follows from the equation (2) and from the inequality
q = 4 that

(9) A, =4n — 6 — (4n — 16)/4 = 3In — 2.

The inequalities (8) and (9) imply » = — 1 which is impossible.

If p=3, axauxgr, is of the form 8- 3% If one of the factors z; is
divisible by 8 then X = 7/3 . If one factor is divisible by 4 and another by
2 then X = 5/2. In the case that only one of the zs is not divisible by
2 we find the result X < 2. Using the inequalities X <5/2, 2, =n — 1
and

o+ x,+xy+ a5 = dn — 6 — (4n — 16)/3
we get the impossibility
5(n — 1)/2 = (8n — 2)/3.

If p=>5, zwxa, is of the form 2%- 3.5 and therefore one of the
factors is of the form 27- 35 and the others are of the form 2°- 5°. Using
this result it is possible to see that X = 79/25. Hence we get the impossibility

79(n — 1)/25 = (16n — 14)/5.
If p =7, we may see that X =< 25/8. This implies the inequality
25(n — 1)/8 = (24n — 26)/7

which is impossible since n > 4 .

Note added December 7, 1970. Prof. J. H. van Lint announced to me
to-day that he has recently extended his result to the case that e =4
(Nonexistence theorems for perfect error-correcting codes, to appear in
the proceedings of the A.M.S. Symposium in Algebra and Number Theory
1970) and even to cases e =5, e =6 and ¢ =7 (On the nonexistence
of perfect 5-, 6- and 7-Hamming-error-correcting codes over GF(g). —
Report 70-WSK-08, Technological University Eindhoven). His method
differs considerably from that of this paper.
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An answer is gwen for a problem of Chowla and Shimura concerning con-
gruences of the type

ayxy® -+ o0 4 ax* == 0 (mod p*).

1. Let I'*(k) denote the least integer s with the following property:
for each prime power p* and each sequence of integers a4 ,..., a,, the
congruence

ax* + -+ + ax,* = 0 (mod p”)
has a solution with at least one x; prime to p. Davenport and Lewis [3]
established the result I'™*(k) < k* + 1, where there is equality whenever

k + 1 is a prime (for some further results, see [4]). Chowla [I] was the
first to show that I"™*(k) may be much smaller if k is odd. Define

& = lim sup{I'*(k)(k log k)~*},
where the lim sup is taken over odd k tending to co. In [2], Chowla and
Shimura proved that
1log2 < 8 < 2flog2
and stated that it would be desirable to close the gap between the constants

l/log 2 and 2[log 2. Norton [5; 6, Section 8] closed this gap halfway,
proving the result

d < 3flog 4.
It is the purpose of this note to show that

& = 1/log 2. 1)
247
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2. The crucial lemma is the foﬂowing

LeMMA 2. Let G be a finite additive Abelian group of q elements. Let
the G; (j = 1,..., 5) be subsets of G such that (i) 0 € G; , (i) a € G, implies
—a € Gy, and (iii) the cardinality of G; equals r (=3), for every j. Then the
equation

&+ +8 =0g€G, @
has a nontrivial solution, provided
222 >5%g — DI —1). (€))
In the proof of Lemma 2 we shall use

LemMA 1. Let the real numbers S(h, j), 1 < h <q— 1,1 <j <y, be
such that

S(h,j) ? —u (R } 0):

8 g1
Y XSk ) =0,
Jm1 Rl
and
s g—1
Y, ¥ (S, ) = K.
=1 h=1
Then
g—-1 =8
a§1 ;n1 @4 S, j)=(@— 1) u — isu—K.

For a proof of Lemma 1, see [7, p. 4].

3. Proof of Lemma 2. Let G* = {yx,, X1 5---» Xa—1} D€ the charac-
ter group of G (x, is the principal character). Then

a1 2
Ea xi(8) = !0 otherwise. =

Let 4 be any one of the sets G, ,..., G, . Denote

x4 = 3 xx(a).

aeAd
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By assumption (ii), y,(4) is real, and, because y,(0) = 1,
Xn(A) 2 =] + /.4
Furthermore, by Equation (4) and assumption (i),
a1

Eo x4) = Y, ff xx(@) = g,

a8A h=0

and hence, by (iii),

01
2 xd)=qg—r=>0.

h=1

Moreover, it follows from (4), (i) and (iii) that

Z Ay =3, % }::o TR

Consequently, by (iii),
a=1

Y, (elA)? = r(g — ).

Rl

Hence we can take in Lemma 1 S(h, j) = xu(G), u =r — 2 and
K = sr(g — r), and we get
a1 s

I =2+ xG)>@— 1) —2— 1% — 2 rg—r). (9

A=l j=1

Suppose that, contrary to our assertion, Equation (2) has the trivial
solution only. Let 1 < ¢ < s. Let #, ,..., i, be different elements of the set
{1,..., s}. Because the equation

g‘; + =i + g‘g = 0) gl; € Gil

has the trivial solution only, we have, by (4),

> I rah Z X» (g 8:.) audt [

7 ‘136‘1

or

a=1 ¢
Z I1 xx(G:) = q.
h=0 k=1
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Consequently, - X
-1 3
2 I =2+ xa(G)) = q(r — 1)~ ©)
h=0 f=1
On the other hand, the left side of (6) is, by (5),
=2(r—1y+(@—Dr—2°—4is%(r—2)2r(g—r)

Combining this with (6), we get

1 8 38 —
b= e S
Since r > 3,
rlg—r) _3g—1)
=2 %=1 @)
Furthermore,
T s
(l_r—l)?'l__r——l' ®)

In addition, it is rather easy to see, by (6) and (3), that s <r — 1. Con-
sequently, by (7), (3), (9), and (8),

4s*(g — 1)
r—1

(3s*+ 25)(g — 1)
+9—1— 2(3.__1) > q,

q.>

which is an impossibility. Thus Lemma 2 has been proved.
4. Let k = kyp’, where (k, , p) = 1. Define

S+2 if p=2,

Y= +1  otherwise.

Let s5,(k) denote the smallest integer s such that whenever a, ‘- a, #.0
(mod p), thq congruence
axi* 4 + ax* = 0 (mod pv) (10)

has a solution with at least one x; prime to p. Then (see, e.g., [5, p. 100] or
[4, p. 183])

(k) < 1 + k max{s,(k) — 1},
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where the maximum is taken over all primes p. Hence for the proof of
assertion (1) it suffices to prove the following
LeMMA 3. For each € > 0, there exists a ky(€) such that
sy(k) < (1 + ¢€) log k/log 2
Jor all odd k > ky(€) and for all primes p.

Proof. Consider the congruence (10). Suppose that k is odd and
ay *** a, ¥ 0 (mod p). The proof of case p = 2 is trivial (since k is odd,
w = 2). Hence we may suppose that p is odd. Denote § = (k, ¢(p*)). Let
r be the cardinality of the set
G ={0u{y:1 <y <p¥ y= axmod p*) for some x; prime to p},
for some j. Then [5, p. 11]

- (p*) i,
r=1+4 S >1+4 %"

Because ¢(p¥) is even, ¢(p*)/8 = 2 and hence r > 3. Thus we may use
Lemma 2 with ¢ = p* and we find that congruence (10) has a solution
with at least one x; prime to p, if

283 = 9k,

This clearly implies Lemma 3.

5. Chowla and Shimura proved in [2] that there is an infinity of
odd k such that
I'*(k) = 1 + kflog(2k + 1)/log 2].
Norton [5] conjectured that
I'*(k) < 1 + k[log(2k + 1)/log 2]

for all odd %. The method used in this paper does not seem to be applicable
to a proof of that conjecture.
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There are no unknown perfect binary codes

1. Introduction. Let V be the n-dimensional vector space over the finite
field GF'(2). For aeV, let the weight of a be the number of nonzero com-
ponents of a. The distance d(a, b) of the elements a and b of V' is defined as
the weight of a—b. If ¢ is a positive integer, we define the sphere of centre
a and radius ¢ as the set

B(a,e) = {xeV|d(a, x)=e}.

A subset €' of V is called a binary code. The dimension n of V is the length
of (; the elements of € are codewords. €' is called a perfect binary e-error-
correcting code or, briefly, an e-code if

(i) U B(a,e) =V

ace
and

(ii) aeC, beC, a==b implies d(a,b)=2¢ + 1.

The following e-codes are known (see [2], [3] and [1], pp. 302—309):

1) Trivial perfect codes in cases n = ¢ and n = 2¢ + 1.

2) Hamming codes in case ¢ = 1, n = 27—1 for some integer r.

3) Golay code in case e =3, n = 23.

The nonexistence of unknown e-codes is known for e=7 (see [12], [4],
[5] and [7]) and in the case that e is odd and < 20 (see [12] and [6]). In
addition, it has been shown by computer search that there are no unknown
e-codes in cases ¢=20, n=2" (see [9]) and ¢=1000, n =1000 (see [4]
and [5]). The purpose of this paper is to prove thé nonexistence of unknown
e-codes for all values of ¢ and n. Hence we state

TuroreM. There are no unknown perfect binary codes.
2. Lemmas. Hamming [3] found

Lemma 1. If an e-code C of length n exists then there is a nonnegative
integer k such that 2% is the cardinality of C and

(1) :Z(’T')zm*.

i=0 ;!

Lloyd ([8], see also [6]) proved
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Lemya 2. If an e-code of length n exists then the polynomial

Ba) = Z—Di{A==)(* 71,

i=0 gt t

where ( ¢ ) =a(a—1) -+ (a—i+ 1) /i, has e distinct positive integral zeros.

1

van Lint proved in [6]

LemMA 3. Let xy, T, . . ., Z, be the zeros of P.. Then

(2) Tt 2 +...+2.=de(n+1)
and

= “Te %
(3) BTz ... Te=2 eZ(t)

The Plotkin bound for minimum distance can be given in the following
form (see [11] or [1], Theorem 13.49).

LEmMa 4. The minimum distance of codewords in any binary code of
length n and cardinality K is bounded by

dmlné%ﬂ(l—K'l)'l.

Berlekamp ([1], Lemmas 13.61 and 13.62; see also [10]) gave the Elias
bound as the subsequent pair of lemmas.

LeMMA 5. Given a positive integer t and a binary code of length n and
cardinality 2F, there exists a critical sphere of radius t which includes K
codewords where

t
K=Y ( . )
i=0 i
By suitable translation -of the code, this critical sphere may be centered at
(0,050

Lemma 6. If each of K codewords in a binary code of length n has
weight =3an, where 0=x=1, then the distance between some pair of these
K codewords must be no greater than 3z (2—x)n(1—K*)™.

By computer search we found that the only positive integral solutions of
the equation (1) in the range ¢=100, n=10000 are the well-known ones
(n=e;n=2e+1;e=1,n=2"—1;e=3, n=23; e=2, n=90; we give
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more details about the program in Appendix, p. 8). Combining this result
with Lemma 1 we get

LeEvmMa 7. If an unknown e-code of length n exists then e >100 or
n > 10000. :

3. Proof of Theorem in case n=2(¢* + ¢)/3. Suppose that, contrary to
our assertion, there exists an unknown e-code, say (', of length n. Since case
¢=T was considered earlier ([12], [4], [5] and [T]), we may restriet our-
selves to

(4) n=2(e*+e)/3, e=8.

For a positive integer m, let odd(m) be the largest odd divisor of m. Let
the z; be the numbers defined in Lemma 3. Denote z; ~z; if odd (z;)=

odd(z;). This relation ~ defines a partition of the set {z,, z,,..., .} into
disjoint subsets X, ..., X,. We now show that
(5) r<e-+1— (belog2)/(4loge).
The equations (3) and (1) imply
(6) o S s il
Hence
(7) odd(zz.: - x.) = odd(e!)
and, clearly,

odd (e!) = p(e) [e/2] 12-Te/41-tess)-....

e <p(e)[e/2] 12

(here and hereafter, p(a) is the product of odd positive integers=a and
[a] is the largest integer =a). Furthermore,
2—9,.?4 [6/2] ! < 2-5ene[ﬂz]+1 — elﬂ!]u—{ﬁelog?){ﬂ]oge]
and henece, by (7) and (8),
Odd (zlxz Al 3e) < p(e}e[e;‘z]-ﬂ-(mslng‘;']}(dlnge]'
On the other hand,

odd(zy2:" 2 %) =1°3:5::(2r—1) =p(2r).
Therefore
r<[(e+1)/2] + [¢/2] + 1— (5elog2)/ (4loge)
= ¢+ 1— (5elog2) / (4loge)

which is the inequality (5).
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Let X; be any one of the sets X,,...,X,. Let s(i) be the cardinality of
X;. Denote

Ri=([1z)/( X x/s(i))*P.

l‘sxi :cxi

Because ye X, ze X;, y >z implies y/z =2, we see that in case s(i) =2
Ri=(2'22)/((z + 22) /2)* = 8/9,
and it is rather easy to prove, by induetion, that generally
Ri= (8/9)*")-1,

Therefore

R, R,= ﬁ (8/9)*D=2 = (8/9)*.
Conae;;uently =
(9) LTyt L= (8/9)¢" |:| (Zx/3(8))*",

i=1 reX
1 ZeX,

and the arithmetie-mean — geometric-mean inequality implies that the right
side of (9) is=
(8/9)¢"((21 + x4+ + ) /€)".

Hence, by Lemma 3,

el (?)g(sm)'-fmﬂ)e,
i=0
and, eonsequently,

e - s+e
o 8/9)>m+1)~e! (7)) _[N(1——=)>1—— .
by b ot e L P 2L e B rerowe
The inequalities (10), (5) and (4) imply
(8/9) (se1082)/ (s10ze)1 >l,
+

and therefore

((5elog2) /(4loge) —1)log(9/8) <log4
or

5 |
dlogd -f-(--—--—l"g‘* 2] ) )
loge 5 \log(9/8) 4

Hence we have
(11) < 64;

and then it follows from Lemma 7 that

~
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(12) n > 10000.
The inequalities (11) and (12) imply
(13) 1—(e* +¢)/(2n +2) >3/4> (8/9)*
Since ¢=8, we have, by (5), the illlequality
(14) e—r=3.
Substituting the estimates (14) and (13) in (10) we get the impossible in-
equality (8/9)%> (8/9)%.
4. Proof of Theorem in case n < 2(¢* + ¢) /3. Assume the contrary: there
is an unknown e-code €' of eardinality 2* and length # where
(15) n<2(e*+e)/3.

Denote, as in Lemma 4, d.;, =min{d(a,b) |aeC, be(, az=b}. Since
the trivial codes are excluded, we know that =2 and consequently, by
Lemma 4,

(16) A=t (1 —%) —on/3.

On the other hand, by the definition of e-codes,

(17) dnin =26 +1.

The inequalities (16) and (17) imply

(18) n=3e+2.
Put { = ¢ + 2 in Lemma 5. Then, by (1),

kz2(Z (1) +(,2)H(L1,))
e L o S (e by

il (:I;)/((:)(H n—2+1+ (11_Z+1)2+"’))
(n+1)(n—e)(n—2e+1)
=il
(e+1)(e+2)(n—e+1)
n(n—2e)
(e+1)(e+2)

b o e

and hence
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A—E)+=1+(E—1)1<1+ D@4
n(n—2e)

Choosing z =2(e + 2) /n in Lemma 6 we get therefore

2(e+2) (—e—2) (1+ (e+(1)(e2+) 2)).
nin—ze

d‘mln =

n
Combining this with (17) we obtain
2(e+2)(n—e—2) (n*—2en +e* + 3¢+ 2) >n*(n—2¢) (2e +1)

or

(19) 3n®— (2¢% + 14e + 8)n? + (6e® + 26¢* + 32¢ + 8)n
— (2e* + 14¢°® + 36e* + 40¢ + 16) > 0.

If e=100 then, by (15), n<10000, and we have the case considered by
Lemma 7. Therefore we may suppose that ¢ > 100. Hence

(20) (2e + 8)n? + (2¢%/3—49¢?/3—32¢—8)n
+ (12¢% 4 3662 + 40e + 16) > 0.

Combining the inequalities (19) and (20) we find
F(n) = 3n°*— (2e*+ 12¢)n*+ (20¢%/3 + 29¢*/3)n— (2¢*+ 2¢?) > 0.

Because the zeros of F' are ¢/3, 3¢ and 2(e®+ ¢)/3, and because, by (18),
n > 3¢, n must be > 2(e?* + ¢) /3. This contradicts (15).

APPENDIX

The computer search for the solutions of the equation (1) was earried out
as follows:
Denote the sums

€

Z(?)=S(ﬂ-,6).

i=0

Then it is well known that
(21) S(n+1,e) =8(n,e) +8S(n,e—1) (e=1,...,n).

The sums S(n,e) (e=1,...,m) were determined for certain initial
value n = n, directly from binomial coefficients, which were calculated re-
cursively from

(22) (g)=1(’*:) = ((n—j+1)(jjl))/j (G=1,...,n).

140




There are no unknown perfect binary codes 9

Then the successive rows of sums S(n,1),...,8(n,m) (n=n,+1,
ng +2,...) were obtained by using (21). When the row was formed in order
e=m, m—1,...,1, then all extra movements of data were avoided. The only
operations for each S(n,e) were one addition and the inspection whether the
sum is of form 27, i

For controlling purposes the sums S(n,e) were also calculated directly
for n = n, + 50, n, + 100, ... from (22) and compared with those from (21).

The numerical calculations were carried out by using the multiprecision
integer arithmeties package for IBM 1130 made by A. Perko. This package
consists of assembler-coded subroutines usable in Fortran programs. The
integers are represented as a binary string which is stored in an integer vector
of the Fortran system, each word consisting 15 bits. The sign indicator and
the length of the string are stored in a separate word. The detection of num-
bers of form 2"* was made simply by inspecting if the binary representation
carries one 1-bit, the following bits being zeros.

The computer time for inspection the sums S(n,e) from the range
e=1,...,100, n=1,...,10000 was about one hour. All sums of form 2"*
were written out. Only the well-known ones were observed.

Remark. The mathematical part of this paper has been done by A. Tieti-
viinen and the computer work by A. Perko.
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Note on Waring’s Problem (mod p)

1. Introduction. Let p be a prime, k& a positive integer and d the
highest common factor of & and p — 1. Let y(k, p) denote the least
positive integer s such that every residue (mod p) is representable as
a sum of skth power residues (mod p). It is well known [6] that

yk,p)=yd,p) =k
and
yp—1,p)=p—1,78@—1).p)=1ip—1).
Put
y(k) = max {y(k, p) : d < i(p — 1)}.
S. Chowla, Mann and Straus [2] showed in 1959 that
y(k) = [3(k + 4)].
Much earlier, in 1943, I. Chowla [1] had proved the result
(1) (k) = O(k'~<**)

where ¢ = (103 — 31/ 641)/220 and, as always in this paper, e is a positive
number. Recently Dodson [5] improved (1) to the simpler result

(k) <K',

provided & is sufficiently large. The purpose of this note is to show that
(2) (k) = O(k¥*+) .

It is very probable that (2) is not best possible, and it would be desir-
able to reduce the exponent to e or, at least, to 4 + & (cf. [7] and [5]).

2. Preliminary results. Dodson ([5], p.151) has shown that if
p > d* then

p(k, p) = max {3, [32logd] { 1}.

Therefore we may suppose that
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(3) p=d.

Let Q. be the set of those distinct residues (mod p) which can be
represented as the sum of w kth power residues (modp), and let g,
be the number of the elements in @, . Put

e(x) = &P, S, (u) = Z*e(uy) , M, = max {|Su(u)| : == 0 (mod p)}
y

where the sum X* is over all the elements of Q.. Then ([8], Lemma 1)
M. < (qud)*.

3. The main lemmas.

Lemma 1 (Cauchy-Davenport Theorem; see [3] and [4]). Letx,, ..., xn
be m different residue classes (modp); let fy,...,B. be n different
residue classes (mod p) . Let y, , ...,y be all those different residue classes
which are representable as

x+p I=i=m,l1<j=<n).
Then h =Zmin{p,m +n — 1}.
Lemma 2 (cf. [8], Lemma 2). If g¢.=2d then y(k,p) < w(l +
[2 log p/log 2]) .

Proof. Put r =14 [2log p/log2]. Let @ be any integer, and let
N = N(a) be the number of solutions of

Y1t ...t y=a (modp), yiEQu-

Then
p—1
pN=Z*...Z*Eoe(u(y1 + ooty —a))
N Jy W=

p—1
= Za(S-(u))’e( —ua)

-1
~q +’Zl(su(u)re(—m)
=¢ — (@—L0M,.

Hence, by the inequalities M, < (qud)}, qu/d = 2 and r/2 > log p/log 2,
we get
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N > p~Hqud)™((qu/d)™ — p + 1)
= pHgd)* (2" —p + 1) > 0.

Lemma 3. If d <i(p —1) and w = 100d** then q. = 2d .

Proof (which is very similar to that of Lemma 2 of |5]). Clearly g. > 2w .
Hence in case d = 100000 the assumption w = 1004*° implies ¢, = 2d .
Consequently we may suppose that d > 100000 .

Let R be a nonzero kth power residue which is not congruent to
+41 (mod p) . It is known ([5], p. 151; [1]) that then there exist integers
x and y satisfying

R=ay'(modp), 1Sy <|z|<pt, (,9) =1.

Consider now three separate cases:

(i) P < o] <9
(]'j) dlﬁ g |I[ < ds,rs
(iii) 1< Jz] <d.

As in Dodson’s paper [5] we may see that in case (i) the numbers of
the form

m+naR (0 =m,n < 3d¥F)
generate at least d*°[4 integers which are incongruent (mod p). More-

over each of these numbers is a sum of at most d*”° kth powers (mod p) .
Hence, by Lemma 1, the expression

my+ R+ ...+ m 4R (0= m,n<}dPF

which is a sum of at most rd*® kth powers (mod p) represents at least
min {p , rd*°/4 — r 4 1} residues (mod p). Setting » = [100d"*] we
get the lemma,

In case (ii) we may show, as Dodson in |5], that the numbers

h+mR+nR2 (0 h,m,n <d"3)
are incongruent (mod p). Hence, by Lemma 1, the expression
hy+mR+n R+ ...+ kh+ mR+ R (0= bi,mi,mi < dV¥[3)

which is a sum of at most rd"® kth powers (mod p) represents at least
min{p, rd*®/27 —r + 1} residues (modp). Putting r = [1004*"]
we get the desired result.
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Also in case (iii) we adopt the method of [5] and choose an integer
[ such that

P < jzff < d®F.
Thus
Rf = afy~ (mod p)

where (¢/,y)=1, 1 =9/ < |z and Rf=Z= L 1 (modp). Moreover
(cf. [5], pp. 153—154) the numbers

m—+nRf (0 < m,n < 3d*®)

form at least d*°/4 distinct residues (mod p), each number being the
sum of at most d*° kth powers (mod p). The result now follows as in
case (i).

4. Proof of (2). Lemma 3 implies that ¢, =2d if w = 100d°".
It follows from this and Lemma 2 that
(4) y(k, p) < (1 4 100d*®)(1 + 2 log pflog 2) .
Since we assumed in (3) that p =< d?, the inequality (4) implies
y(k , p) < (1 4 100d**)(1 4 4log d/log 2) = O(k**+%) .
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Turku, Finland
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ON THE NONEXISTENCE OF PERFECT CODES OVER
FINITE FIELDS*

AIMO TIETAVAINEN?

Abstract. It is proved that there are no unknown perfect (Hamming-)error-correcting codes
over finite fields.

1. Introduction. Let ¥ be the n-dimensional vector space over the finite field
GF(q). For any ae V we define the weight of a as the number of nonzero com-
ponents of a. By the (Hamming) distance d(a, b) of the elements a and b of V we
mean the weight of a — b. If e is a positive integer, we define the sphere B(a, e) by

B(a,e) = {xe V|d(x,a) < e}.

A subset (say C) of Vis called a code, and a subspace of Vis called a linear code. The
dimension n of V is the block length of C; the elements of C are code words. C is
called a perfect e-(Hamming-)error-correcting code if

(i) U,.cB(a,e)= Vand

(i) d,;, = min {d(x,y)xeC,yeC,x # y} = 2¢ + 1.

The following perfect codes are known (see [4], [6], [8], [9], [15],[18],[19] and
[23)):

(i) perfect single-error-correcting codes (e.g., Hamming codes) ;
(ii) trivial perfect codes incasesn =e,andgq =2, n = 2e + 1;

(i) Golay codesincasese =2,g=3,n=1l,ande = 3,9 =2, n = 23.

The nonexistence of other perfect codes has been an open problem. Cohen [5]
proved that for ¢ < 5 there are no unknown linear perfect 2-error-correcting
codes, and Alter [1], [2] extended this result to ¢ = 7, 8, and 9. Van Lint [12], [13],
[14] solved the problem in the general (i.e. linear and nonlinear) case for all
values of g in case e < 7. Many papers deal with the binary case g = 2 (see, e.g.,
[20], [10], [11], and references in [10]) and recently (see [22]) the nonexistence of
unknown perfect codes was proved in that case for all values of e. We now solve
the problem for all values of g and e by proving the following theorem.

THEOREM. There are no unknown perfect codes over finite fields.

The crucial lemmas in the proof of this theorem are the Elias bound for the
minimum distance of code words, a necessary condition (Lemma 2 of this paper)
which was found by van Lint [13]; and a refined arithmetic-mean—geometric-mean
inequality. It would be desirable to know whether the generalization of our theorem
to the case of nonfield alphabets is true (cf. [14]) and whether similar results can be
obtained for other metrics (cf., for example, [7] and [17]).

* Received by the editors April 28, 1971, and in final revised form April 18, 1972,
+ Department of Mathematics, University of Turku, Turku, Finland, and Department of Mathe-
matics, Tampere Technical University, Tampere, Finland.
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2. Preliminaries. Extending a result of Hamming [8], van Lint [12] proved
the following lemma.

LEMMA 1. If a perfect e-error-correcting code of block length n over GF(q) exists,
then there is an integer k such that

(1) 5 ('.’)(q — 1) = g,
i=0 \1

and q* is the cardinality of this code.

Lloyd [16] proved a theorem which gave a necessary condition for the
existence of a binary perfect e-error-correcting code. This theorem was later
generalized by F. J. MacWilliams and A. M. Gleason (see [3]and [15, pp. 103-112)).
Using this generalization, van Lint [13], [15, Lemma 5.5.1] proved the next
lemma.

LemMa 2. If a perfect e-error-correcting code of block length n over GF(q)
exists, then there are distinct positive integers X,,X,, -+ , X, such that

en—elg—1) _ee+1)
= -
q 2

) Xg 4 X+ o+ x,
and
3) XXy e X, = elg" ke,

The Elias bound for the minimum distance may be given as the following two
lemmas [4, Lemmas 13.61 and 13.62].

LeMMA 3. Given an integer t and a code of block length n and cardinality q*, there
exists a critical sphere of radius t which includes K code words, where

K2 qk-".éo (T) (g —1).

By suitable translation of the code, this critical sphere may be centered at (0,0, - - - , 0).

LEMMA 4. If each of K code words has weight < (q — 1)xn/q, where0 < x = 1,
then the distance between some pair of these K code words must be no greater than
X2 — x)(q — Dn/g(1 = K71).

The special case g = 2 of our theorem, stated in the next lemma, was proved in
[22].

LEMMA 5. There are no unknown perfect codes over GF(2)

Furthermore, van Lint ([11]-[14], [15, pp. 95, 96 and 116-118], see also [21])
proved the following lemmas.

LEMMA 6. If a perfect e-error-correcting code of block length n over GF(q) exists
(e < n), then

g < (- 1.

LEMMA 7. If e = 4 and q = p° with p > e, then there is no nontrivial perfect
e-error-correcting code over GF(q).

LeMMA 8. If there exists an unknown perfect e-error-correcting code of block
length n over GF(q), then

(i)e = 8 and

(ii) ¢ > 100 or n > 1000 or e > 1000.
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We also need the following refinement of the arithmetic-mean-geometric-
mean inequality.

LEMMA9. Let y,, y,, -+ , Vs and p be positive integers such that y,, ,/y; = p, for
every i. Then
@) Y2 Ve SRy + ya oo + 2SS,
where
(5) R =4p/(p + 1)%.

Proof (by induction). The assertion (4) is trivial for s = 1. Suppose now that
hz1l,y, <y, < <Y

Y oW = Rh_l((}’l +y,+---+ .V;.)f'"h)n

and y,, /v, =p- Let(y; + y, + --- + y)/h =Y and y,,, = zY, whence z = p.
Then

6) Yi¥2 or* Yesey S RMVTIZYML
Let
f(x) = xY" Y (hY + xY)/(h + 1)) """ = x(h + ) '(h + x)7" L
Then f decreases on [1, c0), and hence
A=/ =pl+@—-D/(h+1)"""<4p(p+1)">=R.
Consequently,
zY** ! S R(BY + ypi)/(h + D) = Ry + Y2 + -+ + e + DY
Combining this with (6), we get the assertion (4) in case s = h + 1.

3. Proof of Theorem in case n = 1e* + e. Assume the contrary: There exists
an unknown perfect code with parameters e, n, and g, where g = p", p a prime, and

7 n=1e? +e.
By Lemmas 5, 7 and 8, we may restrict ourselves to
(®) qg=3, e=p, e=8.

For a positive integer m, define A(m) = p~“m, where p“is the highest power of p
dividing m. Let the x;, 1 < j < e, be the numbers mentioned in Lemma 2. Denote
x; ~ x,if A(x)) = A(x;). This relation ~ defines a partition of the set {X13%55° 07,
x,} into disjoint subsets X, - -+, X,. It was proved in [22] that

9) e—r>(5elog2)/(d4loge) — 1 forp=2.
We now show that generally

(10) e —r = [e¢/p] log p/loge.

Since e = p and e — r is an integer, this implies

(11) e—r21.
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It follows from (3) that
(12) Alx,x, -+ x,) = Ale!).

For a real number a, let Q(a) be the product of the positive integers not exceeding a
and not divisible by p, and, furthermore, let [a] be the largest integer not exceeding
a. Then

Ale!) = Qle)- [e/p]!

(13) < Q(e)(e/p)’”

= Q(e)ele/P)(1 ~(log p)/tiog &),

On the other hand, A(x,x, --- x,) is greater than or equal to the product of those r
least positive integers which are not divisible by p. Hence

(14) A(x,X, -+ x,) = Qe)er ¢+ lerp),

Collecting the results (12), (13) and (14), we get the assertion (10).
Let X, be any one of the sets X, ---, X, let s(i) be the cardinality of X;, and

let
r= (13 )

Now we may apply Lemma 9 which gives the result
Rn‘ < Rs(i]-l’
where R is defined by (5). It follows from this that

RI Rré l_.[ Rst)—1 — Re-r
i=1

r x s(i)
=1 (ng.- ;(_i:)) '

or

1A

Rer l_[

XXy tee X,

which implies, by the arithmetic-mean—geometric-mean inequality, that
XXy o X, S RET((xy + x5 + -+ + x,)/e).
Using Lemma 2 and recalling (1), we get therefore

g ‘e! ,_io (?)(q -1 < R‘"'((" - e)q(q =H 48 : l)e,

and, consequently,

e—r = L _8_1 b_j
(15) R "> (n—b) e!(e) _on 1 +n—b)’
where
_ gle + 1)
(16) b—e—m.
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Let ¢ = [b] + 1. Then

- —\ 5, b=i
]:[(1+ H]H' _)]]1+n_b)
[ S i T
B e{e— -1 c(2b—c+l)(e—c)(c+e—2b—1}
- 2(n — b) 4(n — b)?
5 ele—2b—1) (2b+ 1)*(2e —2b — 1)
=T " 2n-b 16(n — b)?
Using (15) and (16) and recalling that n = je* + e, we thus obtain
—— e +e 3 e*g — 2)(e + 1)’q
17 Ag—n—(q—2e+q 16(2(q— n— (g — 2e + g
1 (g9 —2)q 1
Al T 16{q—1)2>“_q—-_1

If p = 5 then, by (5), (11) and (17), 5/9 = R*™" > 11/16, a contradiction.
Suppose now that p = 3. Then g = 3, for in case ¢ = 9 (17) implies 3/4
> 13/16, a contradiction. For g = 3, (17) takes the form

[3{’;4) [e/3]1og 3/loge > 29}‘64

or
[e/3]1og 3 - log (64/29)
loge log 4/3)
Hence
(18) e <26,

and it follows, by Lemma 8, that
(19) n > 1000.
The inequalities (18) and (19) imply in case ¢ = 3 that
e +e e*g — 2)(e + 1)’q 3

Aq—1n—(q—e+q 16Q2q—Dn—(@@—2e+q’ 4
Substituting this and the equation R = 3/4 in (17) and recalling thate — r = 1, we
get an impossibility.

Suppose finally that p = 2, whence g = 4. Because e = 8, we know, by (9),

that e — r = 3, and, using a similar argument as in case p = 3, we see that ¢ = 4.
Thus, by (9), we may write the inequality (17) in the form

1-—-

(ng](Sclog 2)/(4loge)—1 - 11;"18
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or
elog2 4log(18/11)

loge 5 log(9/%)
Hence e < 32 and, by Lemma 8, n > 1000. Consequently we get, by (17), the
impossibility
§3>1_ e+e e+ 1) 11
9 6n—2e +4 26n — 2e + 4) 550

+1<5.

4. Proof of Theorem in case n < Le? + e. Suppose that, contrary to our
assertion, there exists an unknown perfect code C with parameters e, n and g such
that

(20) n<ie® +e, q23, e=8.
Then we know, by the definition of e-error-correcting codes, that
(21) nzdy, =2+ 1.

Putt = e + 1 in Lemma 3. Then, by (1),

cxe g -+, Jo- )

e+ 1

e n — 1jet+1 o[ - i_l

“ve (1 Ja= (o]

=1+(")M—W“m_h—nﬂ
e+ 1 e

m—e(n—e+1)(g—1)—e
e+ 1)n—e+1)

and hence, by (21),

(22

e

i v |

>1+

3

K>l+—i(q_2){n_e).
e+ 1
Consequently,
+ 1
23 foe KD R m LA IR Y B
@) ( ) (K -1 ==

Choosing x = (g — 1)"'n" (e + 1)q in Lemma 4, we get therefore

(e+ DQg— n—(e+ l}q){l i e+ 1

(@—Dn " "@-2(-9
Using the same method as above, but choosing t=e+ 2, ¢g=3 and x
= 3(e + 2)/2n, we get
(e + 2)(dn — 3e — 6)[l "
2n \

(24) Arnin <

(e + 27

(25)  dpin < (2n — €)(2n — 3e + 2)

) for g = 3.
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Consider first the case ¢ = 5. We shall show that the inequalities (24) and (21)
imply
(26) F(n) = n* — (3e* + 3e)n + €* + 2¢* > 0.
Since the zeros of F are 2¢ and 1e? + e and since we know, by (21), than n > 2e,
n must be greater than 3e* + e. This contradicts (20).

If ¢ = 7, then

e+ 1 Sn—4de + 1
+ =<
@—2(0n—e 5(n — e)

(27) 1

Furthermore, for all g,
20— n— (e + l)qqzn—e—l.
(g— Dn n
Combining the inequalities (24), (21), (27) and (28), we get
(e +1)2n—e— 1)(5n — de + 1) > S5(n — e)n(2e + 1)

(28)

or
5n? — (3e? + 1le + 3)n + 4€® + 7e* + 2e — 1 > 0.
Since
te? —de+3n+e* +3*—2e+1>0,
this implies (26).
If ¢ = 5, the inequalities (24) and (21) imply
(29) 12n% — (7€* + 26e + T)n + 10e® + 15¢* — 5> 0.

If e < 40, then, by (20), n < 1000, and we have the case considered by Lemma 8.
Therefore e > 40 and hence

(30) (€ — 10e + T)n + 2¢* + 9¢* + 5 > 0.

Now (26) follows from (29) and (30).
Suppose now that g = 4. Then, by Lemma 6, n > 4e; and it follows that we
may replace the assertion (26) by

(31) F,(n) = 2n* — (e* + 10e)n + 4e* + 8¢* > 0,
because the zeros of F, are 4e and 3¢* + e. For the proof of (31) we use (22) and get

e+ 1n—e+1) {3n~3e+5
n—e)Bn—4de+3) " 3n—4e+3

(l=KY)'<1+

Therefore,
(e + 1)(6n — 4e — 4)(3n — 3e + 5)
et l< InGn — 4e + 3)
or
(32) 9n? — (6e* + 18e — 9)n + 123 + 4e* — 28¢ — 20 > 0.
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Since we may suppose, as in case g = 5, that e > 40, we have
(33) (3e%/2 — 27e — 9n + 6e* + 32e* + 28e + 20 > 0.

The inequalities (32) and (33) imply the assertion (31).
Suppose finally that ¢ = 3. Combining the inequalities (25) and (21), we find

12n° — (6€2 + 48e + 12)n? + (14e> + 63 + 42¢ — 8)n
— 6e* — 27e® — 42¢% — 36e — 24 > 0.
Since we may suppose, as in case ¢ = 5, that e > 40, we have
(35)  (6e + 12)n? + (e> — 21e* — 42¢ + 8)n + 15¢° + 42¢* + 36e + 24 > 0.
Combining the inequalities (34) and (35), we obtain
F,(n) = 12n® — (6¢* + 42e)n* + (15 + 42e*)n — (6e* + 12¢%) > 0.

Because the zeros of F, are e, 2¢ and Je? + e, and because, by (21), n > 2e, n must
be greater than Ze? + e. This contradicts (20).
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A short proof for the nonexistence of unkrown perfect codes over
GF(g), ¢ > 2

1. Introduetion. It is known (see [3], Ch. V; [4]) that there are
e-error-correcting perfect codes of length n over GI(g), ¢ > 2, in the
cases e = l,e = 2 (if ¢ = 3), and e = n. On the other hand, as a conse-
quence of the methods developed by Lloyd, van Lint and others ([5],
[3]; see also [4]), it was proved in [6] and independently by Zinov'ev and
Leont’ev in [9] that there are no perfect codes when ¢ > 2, 2 < ¢ < n.
Unfortunately the proofs of the latter fact were very long and complicated.
Our purpose here is to give a short proof. The demonstration follows partly
the arguments of [6]. Because, however, there are also big differences,
the present work has been made selfcontained, with only Lloyd’s theorem
and a numerical result cited without proof.

2. Proof. We assume now that there is a perfect code with para-
meters ¢ > 2, 2<e¢<mn, and we shall deduce a contradiction. The
contradiction suffices to prove the result.

Let g = p" where p is a prime. Since the volume of the sphere of
radius e is a divisor of ¢", there is an integer k such that

(1) i(") (¢ — 1) = p*.

im0 \?

Further, Lloyd’s (extended) theorem (see [3], p. 111) says that the poly-
nomial

Pia) = 3 (— 1Y (: & f) (" - ') i

has e distinet positive integral zeros, say z,> z,> ...> x. Since
(ef. [3], p. 113) in P,(z) the coefficient of 2* is (— 1)'¢"/e! and the coef-
ficient of a*~' is
(— 1)'+‘q'(e(2n —e+1) en— e))
el 2 = q (

and since
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ro =3 (Yu—mro =" a-m

=0

it follows, on wusing (1), that
- c(ﬂ—~e)tq—!) efe+1) _en(g—1)

<
(2) 21 = P = 7 ;
(3) ﬁ o = elpg*™.
j=1

and

. —1)(m—2)...(n—
(4) TPe 2yt @s Vil itayly oy

fl T

From (4) we deduce P”K" — 1) (n —2)...(n —e). Thus one of t.he
integers a—1, »—2, ..., n—e is divisible by p™ [elp]l—lop*]— -
and hence
(5) : n > p-Ve-N) > g

Further, by (8), we see that either there are z; and z; such that p|(zi/z),
or p>e=3 and so z,/z. > 2. Therefore in any case z, = 2z, and
hence zz, < 2(x; + %.)%/9. Thus we observe that, by virtue of (1), (3),
the arithmetic-geometric mean inequality and (2), we have

@—1gnm—1)...0 —e+ 1) <elg™'p"

=TTy TSy (x,-:z.)

8
<5 -1
Consequently
ele — 1) 8
2n 9
and so
(6) n < be.
Combining (6) with (5), we obtain
) ¢ < 256
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This implies the inequality ¢ << 100. Then, by the inequality n > ¢ and
a numerical result of van Lint ([2], p. 8), we have n > 1000, whence, by
(6), e = 15. But this contradicts (7), and the contradiction proves the
result.

3. Remarks 1) The crucial point of the present proof is the inequality
(5). Since we have not proved it in case ¢ = 2, we can not handle the
case where ¢ = 2 by using this method. In that case the nonexistence
of unknown perfect codes was proved in a complicated way in [7] and a
little later independently in [8].

2) Bassalygo, Zinov'ev and Leont’ev [1] proved in a nice way that
if a nontrivial perfect code over GF(g) exists then

”2@"2)6(6+2}+6

+ e+ 1.
However, this inequality is not useful in this paper, because it is weaker
than (5).
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