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This practical guide is for engineers and
technicians who design RF nefworks that
filter and match impedances over wide
bands or match af a just one frequency.
The networks may consist of L's, C's,
open- and short-circuited stubs and cas-
cade transmission lines, and transform-
ers. New techniques are described
clearly and at a leve!l between seminars
and graduate-level instruction.

Direct-coupled filters consist of parallel
(or all series) resonators coupled by re-
active subnetworks and are found in
many forms in all frequency bands.
Simple couplings are combinations of L's
and/or C's to provide all-pole or elliptic
response shapes over any band width,
Until now, direct-coupled filters were im-
ited to narrow passband widths. Now
broadband design is easy in terms of the
loaded Q's of resonators. A wide range
of positive element values is always avail-
able, with automatic adjusiment of de-
sign parameters to useful criteria simpli-
fied by spreadsheet optimizers.

The grid approach to broadband imped-
ance matching (GRABIM) maximizes or
shapes power transfer between source
and load described only by discrete-fre-
quency impedance data. It reliably lo-
cates the neighborhood of the likely glo-
bal solution by an efficient grid search
based on knowing each benign reflection
function versus element parameters.
Then, a minirnax-constrained gradignt
optimization precisely locates the solu-
tion while pruning any unnecessary ele-
ments from candidate networks.
GRABIM replaces sophisticated palyno-
mial mathematics by optimization with
assured outcome.

Many equations, illustrations, algorithms
and 100 references support programming
and further study. What little software is
required is available. The mostimportant
feature is the concise explanation of
these useful techniques.
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Preface

This book is for engineers and technicians who want to use new
and useful techniques to design RF networks that filter and match
impedances over a wide band and those that match only at one frequency.

Direct-coupled filters provide a bandpass frequency response by
using reactive structures to couple cascaded resonators from one to
another and to source and load impedances. The resonators can be all
series LC or all parallel LC pairs and the coupling can be any
combination of L’s or C’s or parallel LC traps for stopband enhancement.
Direct-coupled networks can be terminated by resistances at one or both
ends to function as singly- or doubly-terminated filters, respectively.
Direct-coupled filters occur in a many physical forms for use in frequency
bands from VLF to K-band; their common design basis is the L.C model.

When load and/or source impedances are described by data
measured at a set of discrete frequencies over a band, then the broadband
matching problem is to find a network that minimizes the power loss over
all those frequencies. Since 1977, the highly mathematical real-
frequency technique has been employed to solve that problem. This book
describes the grid approach to broadband matching, GRABIM, a much
superior method that is simple, reliable, and very likely optimal.

My two previous books treat direct-coupled filters, broadband
impedance matching, and optimization in considerable detail. For the
past four years [ have been able to devote most of my time to researching,
teaching, and consulting on these and related subjects. My more
important discoveries have been new and useful methods for design of
broadband direct-coupled and matching RF networks.

These new techniques are presented at a level between the
valuable one-to-one contact in my seminars and the practical but
graduate-level treatment in my two prior books. Much more detail is
included here than is possible to present in my seminars, and more than
100 very specific references are cited. .

In addition to direct-coupled and matching networks, there is
considerable material included on comprehensive equal-ripple filters and
special optimization topics. The former motivates the latter: the most
straightforward and reliable way to obtain optimal impedance-matching
results is by a grid search followed by minimax-constrained optimization.

The articles by Herbert Carlin, John Orchard, Virginia Torczon,
and Mike Powell that inspired GRABIM are acknowledged. I also greatly
appreciate the reviews of this manuscript and many valuable suggestions
by Stephen Sussman-Fort, Bruce Murdock, and Jerry Cuthbert.

Thomas R. Cuthbert, Jr.

Greenwood, Arkansas
January 1999

Vil
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1. Introduction —

1.1 Purpose

This book describes how to design direct-coupled filters and
impedance-matching networks consisting of L’'s, C’s, open- or short-
circuited transmission line stubs, and cascade transmission lines. The
distinguishing feature of these methods is that they can be designed to
perform over a broad band of frequencies. This material extends and
consolidates some important subjects in my two previous books
[Cuthbert,1983,1987]!.

Ordinarily, direct-coupled networks are designed with assumptions
that limit their application to narrow frequency bands, i.e., less than 20
per cent. It has only recently been discovered that their desirable
topologies can be realized simply without the passband distortion
previously accepted, and the method enables choice of a wide range of
positive element values for any band width. Direct-coupled network
theory underlies various types of microwave filters and has been the
basis for many other filter applications. Some of these variations have
been described [Cuthbert,1987:Chap.8]; this book takes a more
elementary approach in order to maintain clarity. Because direct-coupled
filters consist of coupled resonators (all series or all parallel), the
elementary broadband impedance matching design technique based on
the loaded Q of one or both terminating resonators is included.

The concept of loaded Q as the ratio of reactive to real power in a
resonator is well known, especially for single-frequency impedance
matching by the “1+Q%” method. The fundamental broadband matching
(or gain-bandwidth) limitation can be expressed in terms of an output
termination’s loaded Q normalized to Qpw, the ratio of passband center
frequency to passband width. The limitation not only shows a theoretical
maximum of power transfer over a frequency band, but also shows the
futility of utilizing more than just a few network branches. This latter
property leads to the concept of trying promising network topologies in
what is superficially an exhaustive enumeration of the few element
values in an attempt to match a discrete set of impedances versus
frequency at either or both ends of the candidate network. Automation of
that concept is the grid approach to broadband impedance matching
(GRABIM) previously described [Cuthbert,1994,1997]. This book extends
the rationale for such direct searches as recently developed by [Torczon,
1997].

The grid approach to a likely global solution for a candidate
matching network does not reliably eliminate unnecessary network

'References for the entire book are listed after Appendix B.
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branches. That elimination takes place in a much more highly-
convergent constrained optimization that utilizes the Lagrange
multiplier concept from classical mathematics. This book shows how that
is accomplished numerically, once the neighborhood of the solution is
obtained by grid search. Thus, the broadband matching problem is
described as a constrained optimization problem, and the basics of related
optimization concepts are included for completeness.

1.2 Overview

Chapter Two presents six fundamental filter and matching
concepts that are essential to understanding major topics in the following
chapters. Foremost is the concise measure of available power that can be
obtained from complex (having resistive and reactive components) or
ideal sources and delivered to a complex load. In the case where some
resistance occurs at both ends of a lossless two-port network, there are
important relationships available at either port or at any other plane
cutting the network. These relationships involve the generalized
reflection coefficient, which is easily related to the conventional Smith
chart. Transfer functions versus frequency for networks with resistance
only at one end and for networks composed of some dissipative
components are also described.

Important network response shapes versus frequency are described
for filters and matching networks. Prototype lowpass and related
bandpass network topologies are described, including direct-coupled
bandpass configurations that may include trap couplings for stopband
ripple (elliptic) responses. Conventional normalization of impedance and
frequency units is described, and the necessary transformation of element
values to unscaled levels is discussed. Several transformations for
sections of bandpass networks are described, especially those that do not
affect the network frequency response. Component values for the equal-
ripple (Chebyshev) and equal-element (minimum-loss) responses are
provided in tables or by program ALLCHEBY.EXE. References to tables
of element values that produce many other response shapes are also
given.

Chapter Two includes a brief but crucial description of the “1+Q2”
technique to convert between series and parallel impedance forms. That
subject acquaints the reader with the concept of loaded Q, a unifying
parameter in both direct-coupled filters and broadband impedance
matching. Methods for efficient analysis of ladder networks using the
chain parameters are discussed, because they are essential for the grid
approach to broadband matching and subsequent gradient optimization.
The Hilbert transform that relates the terminal resistance to its related
reactance of ladder networks is mentioned because of its crucial role in a
well known but complicated broadband matching technique.
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Chapter Three deals with lumped LC direct-coupled filters which
provide bandpass responses through reactive structures that couple a
cascade of all-series or all-parallel resonators from one to another and to
source and load impedances. Prior technology is reviewed, because
similar narrow-band filters have been designed for about 60 years. The
narrow-band inverter concept was introduced about 40 years ago, and is
described as the simplifying concept for connecting resonators in cascade.
This book does not deal with the endless variation of inverter and
resonator realizations, e.g., waveguide apertures connecting resonant
cells. Rather, the fundamental LC networks underlying the various
physical realizations are treated here using the unifying resonator loaded
Q parameter. Asymptotes of stopband selectivity of direct-coupled filters
are described as affected by the balance of inductive (or magnetic) and
capacitive inverters and terminal couplings to source and load. The effect
of source and load mismatch is related to response ripple peaks and/or
flat-loss (dB offset) at band-center frequency (at dc in the related lowpass
prototype network).

Chapter Three mentions the passband distortion inherent in
narrow-band inverters as well as the added distortion due to dissipative
components. It is shown how passband distortion easily can be
eliminated in lossless direct-coupled filters. The concept is presented
both as a stagger tuning of specified resonators by a simply-determined
amount and as the direct conversion of all series (parallel) resonators to
equivalent coupled parallel (series) resonators using simple equations.
This new and useful design technique eliminates passband distortion
over a passband of any width in direct-coupled filters having equal
numbers of L and C couplings. Also, effective and convenient methods
are described to avoid negative elements while identifying wide ranges of
possible positive element values. Numerous examples are provided,
including an elliptic filter that absorbs a resonant load over a broad
frequency band.

Chapter Four bridges the gap between restricted direct-coupled
network topologies and equal-ripple lowpass and bandpass filters having
any useful topology. It is remarkably easy to state the constraints on
locations of transmission zeros in the Laplace frequency plane for all such
filters. The situation described includes compact expressions for both
passband and stopband responses and passband frequencies where the
response has peaks and valleys. Because element values for these
general networks can be obtained only by polynomial synthesis, the
complexity and limitations of that discipline are reviewed.

A second purpose of Chapter Four is to show how the reflection
response of equal-ripple filters and matching networks behaves versus
each network branch value. These cross sections of reflection magnitude
versus L or C values show characteristics that are vital in several new
techniques that follow. The iterated analysis method that obtains more
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accurate element values than polynomial synthesis is described as one
way to take advantage of the cross-section behavior of element valu¢s. In
turn, that sets up the later introduction of the even more géneral
GRABIM technique, the grid approach to broadband impyédance
matching. !

Chapter Five begins with design of lumped-element networks that
match resistances at a single frequency using the loaded Q parameter.
These “el”, T, and Pi examples clarify both loaded Q and the concept of
parallel resistance levels. Then, analytic (classical) gain-bandwidth
impedance-matching theory is reviewed, especially the interaction of
reciprocal fractional bandwidth or Q bandwidth (Qsw) and the loaded Q of
a single LCR resonator load. Concise classical broadband matching
results are presented for the three possible source cases: resistive, purely
reactive, and single LCR resonator. The ALLCHEBY.EXE program that
calculates all these matching cases as well as all other Chebyshev filter
cases is mentioned again.

The real frequency broadband matching method introduced in
1977 and extended since then is very briefly described, in order that the
reader can appreciate its mathematical and procedural complexity and
limitations. Then, the grid approach to broadband impedance matching
{(GRABIM) is introduced, beginning with the initial process of locating an
optimal solution for a chosen type network topology by a highly efficient
direct-search  technique. The underlying = impedance mapping
phenomenon that ensures optimal results is then introduced, followed by
a view of the grid process as discrete line searches over all network
branch/parameter values in log space, An extension is made to
transmission-line elements in a matching network by showing its close
relationship to the lumped LC case. Details of the grid search are
provided in Chapter Six.

Chapter Five ends with the crucial last step in the GRABIM
technique, a highly precise solution to the broadband matching problem
in the context of a constrained optimization problem strongly related to
classical Lagrange multipliers. An overview of the gradient optimization
technique that must start at the approximate solution from the grid
search is provided with details given in Chapter Six. Many examples
‘'show how the grid search finds the neighborhood of the global solution
and how the gradient-based second step eliminates unneeded network
branches by finding the precise solution. Included in the examples are
applications of the matching of impedance neighborhoods that result from
uncertainty of load and/or source data as with closely-coupled antenna
elements where the impedance varies in a neighborhood about a nominal
value at each frequency.

Chapter Six provides the mathematical and algorithmic detail
required for programming. This most reliable broadband matching
method, GRABIM, is a structured optimization process, beginning with a

H
i
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direct grid search followed by an augmented Lagrangian method to
accomplish a gradient-based constrained optimization. A brief overview
of the general problem and solution is related to the specific broadband
impedance matching problem. The first part of Chapter Six extends the
efficient RF network analysis of Chapter Two to include means to
calculate exact partial derivatives that are essential to gradient-based
optimization.

Then, direct search methods are described, like the grid search,
that do not require derivatives or functions that are smooth. The basic
investigation of pattern search algorithms that include the grid search is
cited for credible formulation of the first search phase of GRABIM. The
constrained optimization problem is stated as in mathematical literature
and as related to broadband matching. Common penalty functions such
as the exterior quadratic penalty are extended to deal with the minimax
(ideal equal-ripple) requirement.

An important part of Chapter Six shows how the sequence of
unconstrained optimizations technique (SUMT) can be applied to obtain
precise numerical solutions to constrained nonlinear optimization
problems such as that required for broadband impedance matching.
These so-called augmented Lagrangian methods simply extend the least-
squared errors concept by adding variable goals or targets to the error
residuals (differences). This extension of ordinary penalty function
optimization techniques, known as the method of multipliers, completes
the explanation of why the final step in the GRABIM method works so
well.

The Gauss-Newton unconstrained optimization algorithm is the
inner of two nested optimization loops in the method of multipliers. It is
shown to solve the nonlinear least squares problem very efficiently and is
easily adapted to the method of multipliers. Its basic step in variable
space is given, and the exact formulation of the necessary first partial
derivatives is clearly described.

In addition to numerous examples throughout these chapters,
many tables and figures are provided. Appendix A describes essential
properties of the bilinear circle-to-circle mapping functions that explain
the benign nature of lossless network reflectance as a function of element
variables.

References for further explanation and suggested development
follow Appendix B, which is a collection of abbreviations and symbols
utilized in this book.

1.3 Related Software

Executable programs for PC/DOS computers are available from the
author at the address on the copyright page. Revisions are planned as
improvements become available. The programs have been written in
QuickBASIC® version 4.5. Generally, this book describes design methods
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that may be superior to those currently programmed. Improvements in
software to incorporate the superior techniques described in this book
will be made available as soon as possible. The objective is to p‘roduce
engineering design data in the most direct form for both the programmer
and the user. Programs currently available are:

CONETOPM. COnstrained NETwork OPtimizer for Matching.
Includes ladder analysis versus frequency for resistive or sampled
termination impedances. A wide range of responses, voltage-current,
and sensitivity data are generated and can be saved to disk file (e.g.,
for use with spreadsheets, graphs, etc.). Constrained and bounded
optimization of ladder networks by a Gauss-Newton optimizer is
included. A complete GRABIM (GRid Approach to Broadband
Impedance Matching) capability is also provided in the optimization
menu, including cross-section reflectance versus all possible element
values.

S11TOZ. Converts a list of S parameter reflection data pairs (Siy or
S22) to resistance and reactance values normalized to one ohm. S
parameter data must be in numerical magnitude (not dB) and angle in
degrees and stored in an ASCII file. The impedance data can be
converted to admittance data to observe real-part trends for model
recognition. Converted data may be stored on disk files.

ALLCHEBY. Designs all Chebyshev filter and matching prototype
lowpass and bandpass networks by providing gi elements and loaded
Q values. Optimal gain-bandwidth matchmg is obtained for a single
RLC load resonator and a source that is purely resistive, purely
reactive, or an RLC resonator. The best possible result for infinite
networks is provided as well as that for a specified number of
elements or resonators. Passband and 20-dB stopband edge
frequencies are provided, and attenuation at any requested
normalized frequency is given. Estimates are provided for midband
dissipative loss given a uniform unloaded Q value.

DENORM. Denormalizes prototype element values and vice versa,
Receives typed entries of normalized ohms reactance or susceptance
and converts those to inductance and capacitance, respectively.
Conversion is based on initial data entry of units of frequency,
inductance, and capacitance as well as a specific frequency and an
impedance scale factor, if not unity.

RIPFREQS. This program implements Daniel's technique for
predicting the Chebyshev passband peak and valley frequencies and
the exact transducer loss function for all frequencies. The required
data are the numbers of zeros of transmission at dc and infinity as
well as those at arbitrary stopband frequencies. Orchard’s filter
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design by iterated analysis as well as pole-placer algorithms depend
on this capability

o EXCEL CHOICES Spreadsheets. EXCEL® version 5.0 spreadsheets
are provided to design specific wideband direct-coupled filters.
Subroutines for replacing series resonators by coupled parallel
resonators and elliptic resonators by trap-coupled parallel resonators
are included to simplify user construction of all possible coupling
combinations. The goal is to aid design of direct-coupled networks
that meet all the user’s particular requirements, perhaps obtained by
the built-in optimizer.

1.4 Revisions

It is hoped that this book can be revised occasionally as
improvements, added scope, errata, and new research results become
available.
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2. Fundamentals

There are just a few concepts that the reader should have in mind
to benefit from the following chapters. It is important to know how power
is transferred from a source to a load through a two-port network,
especially when those terminating impedances are complex, ie., have
both resistive and reactive components. One essential concept is the
generalized reflection ‘coefficient, which can be plotted on an ordinary
Smith chart. The effects of impedance levels, resistance and reactance
relationship, and dissipation enter these considerations. The topology of
prototype ladder networks, prominent response shapes versus frequency,
how to obtain the sets of element values that produce those responses,
and how to analyze the network to calculate a response should be clearly
in mind. Finally, the important parameter that unifies all of these effects
is loaded Q, the reactive power relative to the real power at significant
places in the ladder network.

2.1 Power Transfer

The load impedance of a two-port network must include a
resistance to receive power. The case where the source also includes a

- resistance makes that a doubly-terminated network, and the maximum

power that such a source can deliver has a finite limit. This case is best
analyzed using generalized reflection coefficients related to Smith charts
that map impedances into a unit circle. There is also use for mapping
between Smith charts normalized to different impedances. Unlimited
power can be delivered by a source with no resistance; then the network
is said to be singly-terminated. The power that is delivered by such an.
ideal source is determined solely by the network’s input resistance or
conductance.

- 2.1.1 Complex Source to Complex Load

Power is delivered at a single frequency from a source having
voltage Es (rms) and internal impedance Zs=Rs+jXs as shown in Figure
2.1.1. The maximum possible power that can be delivered to load

Z, —e-
+ (R, +jX,)
E, aY, Z (R, +iXy)

P>

A Zunams

Figure 2.1.1. Power transfer from complex source to complex load.
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impedance Zi=Ri+XL occurs when Z, is equal to Zs except that Xi1=—Xs (a
conjugate match); that power is

2
_l&s[
as — 4 RS .
Commonly, the load power relative to Pas is expressed as a complicated
algebraic equation. It is significantly better to express this ratio
compactly as the transducer power gain:
T Py =1-lof*, (2.1.2)
Fus
where the complex variable o is called the generalized reflection
coefficient and is defined by
Z, -2
Z, +Z,’
The asterisk (*) superscript indicates conjugation, which reverses the
sign of the imaginary part of the quantity.

When Zip=Zs*, the numerator in (2.1.8) is zero, making a=0 and
PL=Pss according to (2.1.2). Besides being compact, these equations
introduce the generalized reflection coefficient, a, which occurs in
impedance mapping and other important areas of RF network design.

2.1.2 Generalized Reflection Coefficient

The Smith chart is a unit circle centered at the origin of a
Cartesian plane; the abscissa represents the real part and the ordinate
the imaginary (j) part of a reflection coefficient p:

_z-z, (R=R)+j(x-x)
Z+Z _(R+Rc)+j(X—Xc).

To denote Zc as the impedance at chart center, the conjugate, Zc", is
placed in the denominator without loss of generality. For many decades
since its introduction, the familiar transmission-line application of the
Smith chart assigned X.=0; beyond that, the most common case further
assigned Z:=50+j0, giving p as the reflection coefficient with respect to a
50-ohm resistance. In any event, the impedance level is often normalized
to resistance R, so that

(2.1.1)

as 2.1.3)

p (2.1.4)

_z-7, _(R-1)+j(X-X.)
P72 (®Re)r(X-X) 219
where
EEII:C , and ()?_)‘(C)E(—X—%). (2.1.6)

In every sense of the word, (2.1.4) maps the Z plane into the p
plane as shown in Figure 2.1.2. In fact, it maps the right-half Z plane
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Figure 2.1.2. Generalized Smith Chart: normalized impedance representations.

into a unit circle about the origin of the p plane. (The left-half Z plane
where R<0 is mapped into that part of the p plane outside the unit circle.)

Again, the numerator of (2.1.4) is zero when Z=Z, which is why the -
center of the Smith chart, p=0, is labeled Z; for Z center. Comparing
(2.1.4) to (2.1.3) shows that the conjugation in (2.1.3) occurs in the
denominator; that is simply an arbitrary definition to indicate the Smith
chart center. For example, if one considers Zs=40+j30 ohms in (2.1.3),
then the number to use in (2.1.4) is Z:=40—330 when solving the power
transfer equation (2.1.2). ‘

The circles in the Smith chart in Figure 2.1.2 are loci of constant
resistance R/R., and the circular arcs are loci of constant (X~Xc)/R¢, where
X.=0 in less general applications. Also, the arcs in the upper half of the
Smith chart represent positive normalized reactance while those in the
lower half represent negative reactances. This generalization of the
Smith chart requires only that the user consider (X-X,) instead of just X.
It is a little trickier; e.g., the Smith chart real axis (abscissa) represents
not X=0 but X-X~0 or X=X.. The power of this concept turns out to be
well worth the bother.

The generalized reflection coefficient and the traveling wave on a
transmission line having a complex Zo can be compared. Contrary to
generalized reflection coefficient (2.1.4), the traveling wave reflection
coefficient is (Z1~Zo)/(ZL+Zo), where Zo may be either real or complex.
When Z is real, the reflection coefficient applied in (2.1.2) does give the
relative power. When Zy is complex, the traveling wave's reflection
magnitude is not directly related to power. The maximum power transfer
takes place when Zi=Z¢*, and it is only when there is a particular
traveling-wave reflection that maximum power is transferred from the
transmission line to the load. Therefore, the traveling wave may be more
convenient for expressing the properties of a port irrespective of the load



i1

impedance, Zi, but the power waves based on (2.1.4) “give a clearer and
more straightforward understanding of the power relations between
circuit elements connected through a multiport network” [Kurokawa].

Example 2.1.1. Consider a complex source connected to a complex load
as in Figure 2.1.1. Suppose that Zs=25-j50 ohms and Zi can take on
those impedances that cause a 2:1 standing-wave ratio (SWR) with
respect to 50 ohms. Problem: Find the range of power delivered to the
load. Solution: The SWR is a scalar mapping of the magnitude of a
reflection coefficient:

1+ ]pi
SWR = . 2.1.7)
1-|d]

I N N PO U B B TR A B T |
0

1 0.8 0.6 0.4 02 0 0.2 04 (1] 08 i¢

Figure 2.1.3. A 2:1 SWR circle normalized to two different impedances.

Along the real axis of the Smith chart, SWR=R or SWR=1/R, since
SWR=>1. See Figure 2.1.3, where the concentric 2:1 SWR circle with
respect to a normalized 50-ohm chart center locates all those load
impedances to be considered.



12

The range of load power relative to the maximum available from
the source is found from (2.1.2); in this case it can be found graphically by
simply taking several numbers from the SWR impedance circle and
plotting them on this same Smith chart with respect to Zg'=25+j50, i.e. as
o In (2.1.3). Pick four arbitrary points on the SWR circle: A=100+j0,
B=25+j0, C=42.5+j32.5, and D=42.5-)32.5 ohms. The smaller circle in
Figure 2.1.3 is thus found by the corresponding four values of a using
(2.1.3). For example, consider how point A is replotted wrt Z.=25+50.
For A=100+0, (2.1.6) uses R/R; =4 and (X-X:)/Rc =—2. Then, (2.1.5) shows
that that p=(3—52)/(5—2), so p=0.67 at angle -11.9 degrees. That is
plotted as point A’ in Figure 2.1.3.

Graphically, the magnitude of a (distance from chart center to
points on the smaller circle) varies from about 0.36 to 0.80. Then (2.1.2)
shows that the load power varies from 0.36 to 0.87 of the maximum
available power from the source (2.1.1). A general technique for an
analytic solution is described next.

2.1.3 Circle to Circle Mapping

A more general view of what is illustrated in Example 2.1.1 and
Figure 2.1.3 is shown in Figure 2.1.4, which shows the mapping from the
right-half Z plane into the unit circle in an f plane and also into a second
unit circle in a g plane. In terms of the problem in Example 2.1.1,
Z=50+j0 so that the 2:1 SWR circle in the Z plane is centered on the Re Z
axis as well as being concentric in the f plane in Figure 2.1.4. Z¢is is also
the center of the f plane circle, so that is the Smith chart showing the 2:1
SWR with respect to 50+j0 at its center. Mapping function F(Z), shown in
Figure 2.1.4, is (2.1.4) with Z;=50+j0. The g-plane unit circle can be
considered a generalized Smith chart according to mapping function G(Z)
in (2.1.3) so that chart’s center represents Zs*. Then the maximum and
minimum points in the g plane of Figure 2.1.4 represent the extreme
values of |a| on the locus. (When the g-plane origin is encircled, as in
Figure 2.1.4, the minimum within the locus is la|=0) There are
compact expressions for the radius to those points in the two cases where
the SWR image encircles the g plane origin and when it does not. The
details are in Appendix A, Section A.2.2. '

The important conclusion is that mapping from the right-half Z
plane into a generalized Smith chart is possible, as well as mapping
between Smith charts having different normalizing impedances (chart
centers; see mapping function H(f) in Figure 2.1.4). The interpretations
vary, depending on the problem at hand. The SWR expression in (2.1.7)
in terms of any generalized reflection coefficient also has applications in
situations where there is no transmission line involved.
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Im2 Z Plang

Re Z

Figure 2.1.4. Bilinear transformations between the Z plane and unit circles.

2.1.4 Doubly-Terminated Networks
Figure 2.1.5 shows that doubly-terminated two-port networks have

Figure 2.1.5. Doubly-terminated filters have resistances at both ports.

resistances at both ports, and there can also be a reactance with one or
both resistances. With those terminations, the frequency selective
response of power transfer is determined by the frequency behavior of the
input reflection coefficient, pin.
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1t is often useful to assume that the two-port network is lossless, so
that the power delivered by the source all reaches the load, as shown in
Figure 2.1.6. The power delivered by the source, Pi, is governed by
(2.1.2), as shown in the left-hand fraction in (2.1.8):

_|z-z|_|z -7 _|z.- 2]
'aI-H—|ZI+Zrl—lZi+ZZ|. (2.1.8)'

Lossless / / Network

Figure 2.1.6. Power conservation and impedances in a lossless network.

At the output port, the right-hand fraction in (2.1.8) is the pertinent
generalized reflection coefficient, where Zy is the Thevenin equivalent
source impedance at that interface. (Zp is the impedance seen looking
into port two when E=0.) Also, at any interface in the lossless network,
a forward impedance, Zs, and a Thevenin equivalent source impedance,
Z1, can be found, so that the middle fraction in (2.1.8) is defined. The
magnitudes of all three of those fractions (reflectance) must be equal
because the power is the same at any point in the lossless network.
Another important conclusion is that a conjugate match at any point
implies a conjugate match everywhere in the network, i.e. lo|=0.

A useful fact for designers is that the voltage or current at any
point in a conjugately-matched lossless network can only increase by the
square root of SWR in the presence of a reflection mismatch. This fact is
well known for the conventional SWR of transmission lines relative to
voltages and currents in a “flat” line [ITT:24-9]. Remarkably, it is also
true for lossless two-port networks of any kind, using generalized
reflection coefficients in (2.1.7). The explanation is seen in the Z plane in
Figure 2.1.4, where there is an “SWR” circle with the same extremes of
Re Z, i.e., resistance or conductance, whether or not there is an X; offset
as in (2.1.4). Therefore, SWR in (2.1.7) is a quantity just as important in
the generalized reflection case, with physical significance regarding
standing waves on transmission lines.

Physical networks have dissipative components and are thus lossy
to some extent, of course. It is convenient to mention several common
performance parameters for lossy doubly-terminated networks such as
shown in Figure 2.1.7. Return loss (RL) is the ratio Prea/Pys in dB:
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RL = -20Log, [l dB, 2.1.9)
where I is a simple reflection coefficient:
_Zi R 2.1.10)
T Z,+R (2.1
R, ]

......

vvvvv

Lossy Networl

N 2

Figure 2.1.7. Power and reflection in a lossy, doubly-terminated network.

Mismatch loss, like SWR, is simply another scalar mapping of a reflection
coefficient magnitude; mismatch loss (ML) is the ratio Pin/Pas in dB:

ML =-101Log,, (1-|r]*)dB. (2.1.11)
Efficiency (n) is the ratio P2/Pis in dB:
n=-10Log,(B,/B)dB. (2.1.12)

It follows that the insertion loss, P2/Ps, is equal to the sum of mismatch
loss and efficiency in dB.

2.1.5 SinglyJ]I‘erminated Networks

Figure 2.1.8 shows that singly-terminated two-port networks have
a resistance at only one port, and there can also be a reactance associated
with that resistance. The other port of a singly-terminated network is
terminated by an ideal voltage or current source. As shown in Figure
2.1.8, an ideal voltage source must be adjacent to a series network
element (E). If the adjacent branch were in parallel, then it would be
useless; the branch voltage would be fixed by the ideal voltage source.

90 P=

VY

AAA/\/\J

Figure 2.1.8. Singly-terminated filters have a resistance at only one port.

The similar situation with an ideal current source is also shown in Figure
2.1.8, where the adjacent network element (E) must be in parallel.



16

The power available from either kind of ideal source is infinite, so
the power delivered to the load cannot be normalized to Pus like the
doubly-terminated case. Figure 2.1.9 shows a singly-terminated network
designed so that the input impedance is simply resistance R4 at some
reference frequency, say wo. It is easy to show that R4 establishes the

4 1
—O coo c {(—
+ ! +
X F 0"
o Q
Is

>R, at ()
Figure 2.1.9. A singly-terminated network having input impedance Rs+j0 at oo.

magnitude of transfer response V4/Vy at wo. The power delivered to the
network by the source is |Is|2xR4, and the power reaching the load is
| Vo |2/Ro. If the network is lossless, those two power quantities must be
equal. Therefore, noting that Vs=IsxRa4,

v (R | |
\70{_ ‘/; (2.1.13)

The dual case with an ideal voltage source requires that the input
admittance be pure real (a conductance) at a reference frequency in order
to establish a 0 dB response level.

Another consideration that is especially important for singly-
terminated networks is the Reciprocity Theorem. As in Figures 2.1.9 and
2.1.10, the reciprocity theorem says that the voltmeter that reads Vg can
be swapped with the current source Is, and the voltage transfer ratio will
not change. Similarly, an ideal voltage source swapped with an ammeter
will not change the transfer ratio. Reciprocity requires a network
designed for open-circuit voltage response to have the same short-circuit
current response, and vice versa. For example, the network designed as

4 1 50 19

O ooo IE

v 50 Q
Q D

L>R,,at 0o

+
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Figure 2.1.10. Voltage response equal to the current response in Figure 2.1.9.
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in Figure 2.1.9 can be used as in Figure 2.1.10, where the resistive source
can be either the Norton equivalent current source or the Thevenin
equivalent voltage source shown to the right. An application for the
network in Figure 2.1.10 could be as a preselector for a voltage-controlled
operational amplifier. )

Note that applying the reciprocity theorem to Figure 2.1.5 shows
that doubly-terminated networks can always be turned end-for-end
without any effect on the frequency response.

2.2 Wajor Response Shapes

The response shapes or frequency selectivity characteristics for
many of the filters and matching networks in this book are derived from
the defining lowpass response starting at de. Then the lowpass response
is translated, scaled and reflected to create a comparable bandpass
response characteristic. The process is more simple than it sounds, and
familiarity with the few variations of passband and stopband shapes,
including those on a Smith chart, clarifies choices that the RF designer
commonly encounters. ‘

2.2.1 Lowpass to Bandpass Transformation
Figure 2.2.1 shows a lowpass response shape normalized to 1

Loss (dB) —————f==
o > b -3
R § 8 38
) |
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Frequency (Radians/Second) ————fii>

Figure 2.2.1. Normalized lowpass response with flat loss and ripple loss at dc.
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radian per second (rad/s) at band edge. The negative frequencies from -1
rad/s to 0 (dc) are not always shown, because of the arithmetic symmetry
of the lowpass response about dc. Of course, there can be any shape from
dc to 1 rad/s; Figure 2.2.1 illustrates the equal ripple (Chebyshev) shape
that has insertion loss at dc in addition to flat loss across the band.
Figure 2.2.2 shows a bandpass response shape derived from the
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Figure 2.2.2. A bandpass response with geometric symmetry on a log abcissa.

lowpass shape in Figure 2.2.1. The bandpass shape is identical to the
lowpass shape except that:

e The bandpass shape is normalized to 1 rad/s at band
center.

¢ Band center frequency wo is the geometric mean of band
edges o1 and oz, hence visual symmetry is obtained by
giving the abcissa a logarithmic scale.

¢ The passband from ®1 to @2 can be scaled to any width.

The geometric properties of the bandpass case require
W, = ,/co, @, . (2.2.1)

Also, it is both meaningful and convenient to define a bandwidth quality
factor:
@, 100
= = . 2.2.2
Onw ®, -0, %BW ¢ )
When considering lowpass networks, Qew=1. A common calculation is
the location of the passband edge given the % band width or Qsw:
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%z[” (20,,) + 1] /(2Q,,,,,). 2.2.9)

Generally, w¢=1 rad/s is assumed, which makes wi1=1/w2 according' to
(2.2.1).

The LP-BP mapping described in this section is a standard
reactance transformation; there are other reactance transformations. See
[Daniels, 1974:Ch.6], [Cuthbert,1983:Sect.6.6]. A more general method to
obtain any equal-ripple bandpass response shape is described in Section
4.2.

2.2.2 Insertion Loss Behavior

The four passband response shapes shown in Figure 2.2.3 are often
employed. The most common are the equal ripple (over-coupled) or

]

]

4. Undercoupled

(Fano Pulse) A e ot
2. Maximally Flat 9 :
(Butterworth) és B KPR N AP QDY § N Ay S 5 S
3. Minimum Loss < '
(Equat LRt SEETELTES | ¥ VL EETT PR e e
Element, g E

Doubly-Term.) 14
4. Equal Ripple
{Chelbychev) 04

0 025 05 0735 1 125 15 175 2
Frequency (Radians/Second)

Figure 2.2.3. Four main passband response shapes.

Chebyshev shape and the maximally-flat or Butterworth shape. The
undercoupled shape is less well known [Cuthbert,1983:310-314], but it
has a minimal transient overshoot characteristic. The undercoupled
shape’s transient characteristic is similar to the better known Bessel
response, which could be used instead [Zverev]. All the stopband
responses depicted in Figure 2.2.3 are all pole, i.e. monotonic without any
ripples or zeros of transmission.

Many filter designers are familiar with the equal-element or
minimume-loss shape, which results from making all prototype network
element values equal. That also produces a network having minimum
sensitivity as well as minimum loss at the reference frequency in the
presence of dissipative network elements. The three-element (N=3)
minimum-loss shape is shown in Figure 2.2.3. The useful shapes for
doubly- and singly-terminated minimum-loss filters are shown in Figure
2.2.4. Unfortunately, there are only a few such shapes with acceptable
passband ripple (Jess than 3 dB). The defining prototype gi values shown
in Figure 2.2.4 are discussed in Section 2.5.1.
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Figure 2.2.4. Equal-element LP filter responses normalized to 3-dB at 1 rad/s.

Undercoupled Maximalily Flat

Figure 2.2.5. Reflection coefficients for undercoupled and Butterworth shapes.

2.2.3 Reflection Coefficient Behavior

Clearly, the reflection coefficient in (2.1.2) controls the power
transfer in lossless, doubly-terminated networks. Smith charts of the
reflection behavior versus frequency provide a better understanding of
how the filter produces its response. Figure 2.2.5 shows the input
reflection coefficients of lowpass networks having undercoupled and
maximally-flat responses. At dc, the filter is transparent to the equal
source and load resistances, so the reflection is zero, i.e. the center of the
Smith chart. Being normalized for a passband edge at 1 rad/s, these
responses pass through a reflection magnitude circle of radius 0.4535 at
that frequency, corresponding to Pr=0.7943xPss (1.0 dB), according to
(2.1.2). As frequency increases, the reflection coefficient locus goes to the
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short-circuit side of the Smith chart, indicating that the input element of
this particular lowpass filter is a shunt C as opposed to a series L.

Figure 2.2.6 shows the added flair for shapes with passband
ripples. Starting from the chart center at dc again, the equal-ripple locus

Minimum Loss Equal Ripple

Figure 2.2.6. Reflection coefficients for minimum-loss and equal-ripple shapes.

loops out to the 1-dB reflection (0.4535 radius) and then goes back
through chart center (0 dB) before again passing through the 0.4535
circle at 1 rad/s. Note the correspondence with the insertion loss
behavior in Figure 2.2.3. Also, the equal ripple locus in Figure 2.2.6
starts at the center because an odd degree (N=3) Chebyshev filter was
employed. Even-degree Chebyshev lowpass filters have the ripple value
at dc (e.g. see Figure 2.2.1 for N=4), and thus have a reflection coefficient
at dc that is on the real axis to one side of the Smith chart’s center.

2.2.4 Flat Loss

Figure 2.2.7 shows an odd-degree equal-ripple response with added
flat loss. This situation is typical of the broadband matching networks in
Chapter Five. In this and other cases where there is loss at de, the
reflection locus starts to one side of chart center and remains within an
annular ring whose radii correspond to the ripple extreme values in the
passband. Comparison of the rectangular insertion loss graph and the
Smith chart in Figure 2.2.7 shows that the locus starts tangent to the
inner circle, becomes tangent to the outer circle at ®=0.5, tangent to the
inner circle again at ®=0.86, and passes through the outer circle at w=1.

All loss at dc in lowpass networks is due to unequal terminating
resistances. That loss can result from flat loss and/or the even-order
Chebyshev ripple magnitude. '
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Figure 2.2.7. Broadband matching response behavior of reflection coefficient.

Example 2.2.1. Consider an input port connection as in Figure 2.1.7
where the input reflection coefficient, I', is defined by (2.1.10). Suppose
that the two-port network is lossless and low pass, i.e. all shunt C’s and
series L’s. Problem: Find the source and load resistances when I'=0.39+j0
as in Figure 2.2.7. Solution: Solve (2.1.10) for Zin:

1+T 2
= = -1/ 2.2,
Z,=R T R,[l_r 1] (2.2.4)
Using the given value of I in (2.2.4) shows that Zi»=2.2787+j0, i.e. when

the source resistance is unity and the load resistance is 2.2787 ohms.
That produces the 0.72 dB flat loss in Figure 2.2.7.

2.2.5 Stopband Ripple

Elliptic function responses are shown in Figure 2.2.8. The defining
characteristic is the stopband ripple behavior which minimizes the
transition between pass and stop bands. The most familiar shape
provides ripples in the passband as well. However, a valuable passband
shape is maximally flat while retaining the stopband ripples. That
tnverse Chebyshev shape provides docile transient response while
retaining the benefits of stopband ripples. Unfortunately, there are only
a few response nomographs available [Christian,1977:296). The Cauer
filter with ripples in both the pass band and stop band is very well
documented [Zverev].

The presence of stopband ripple implies zeros of transmission
(attenuation poles) at a finite number of stopband frequencies. These are
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achieved by parallel LC “traps” connected in series or series LC traps
connected in parallel in ladder networks, as described in Section 2.4.1.
A Attenuation pole A

Wy Wy Wy Wy

w w
Inverse Chebychev Cauer

Figure 2.2.8. Inverse Chebyshev and Cauer elliptic filter responses.

2.2.6 Effects of Component Dissipation

The four most useful passband shapes, described in Section 2.2.2,
are displayed in Figure 2.2.3 under the assumption of a lossless filter.
When the elements are dissipative, as indicated by a finite element
unloaded quality factor Qu, the passband insertion loss increases,
especially at passband edges. Figure 2.2.9 shows only the upper-half
passband of a doubly-terminated minimum-loss (equal-element) filter of

......................

tnsertion Loss (dB)
Efficiency (dB)
o>
)
)
+
1

O e

F-Fr=r-r-r

Figure 2.2.9. Upper pass band of an N=4 minimum-loss dissipative filter.

degree 4 and centered at 1 rad/s for Qu=w, 20, and 4. The lossless filter
passband edge is at ©®=2.12 rad/s corresponding to 3-dB loss; see Figure
2.2.4. The simple steps for designing this filter are presented in Section
2.4.2.

As noted in Section 2.1.4, the insertion loss, P2/Pas, for doubly-
terminated filters is the sum of input mismatch loss and efficiency, all in
dB. For infinite Qu, the response is entirely mismatch loss, because the
efficiency loss is 0 dB. Reduced values of Qu result in increased loss at -
midband; this is easily calculated as explained in Sections 2.3.3 and 3.3.4,
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Figure 2.2.9 clearly shows worsening loss as the passband edge is
approached, and the largest part of the insertion loss is seen to be in
efficiency, not reflection. This dominance of efficiency continues into the
stopband, but the insertion loss is nevertheless predicted by the lossless
case with increasing accuracy when well removed from the pass band.
The minimum-loss filter responses have been tabulated [Cuthbert,
1983:458], [Taub,1963], [Taub,1964] and show these trends clearly.

The minimum-loss or equal-element filter is important because it
approximates an average of all other filters in terms of element values
and performance. Therefore, the described dissipation effects apply to
most filters and matching networks.

2.3 Significance of Loaded Q

The most obvious application of loaded Q (QL) is in the conversion
between series and parallel forms of impedance. However, loaded Q can
be found as a property of complex source and load terminations as well as
at internal interfaces within ladder networks. Its physical meaning is
the ratio of reactive (stored) to real power. In conjunction with Qaw
defined by (2.2.2), loaded Q is the main parameter in filter and matching
network design. Certainly, loaded Q is the unifying parameter for this
book and must be introduced before proceeding.

2.3.1 Series-Parallel Conversion
Figure 2.3.1 shows a resistance, R, associated with a reactance, X.

— —
Rs ’

O o

Figure 2.3.1. Series and parallel impedance forms equivalent at a frequency.

The reactance could be either inductive or capacitive and equal to oL or
1/wC, respectively. For purposes of loaded Q, the negative sign associated
with capacitive reactance may be ignored. Subscripts indicate series (s)
or parallel (p) connection. The application is to relate the resistances and
reactances so that the same impedance at that particular frequency is
obtained at both the series and the parallel terminals. For notation, it
can be said that Rp | jXp, i.e. Rp is in parallel with jXp.

For the equivalence to hold, the ratio of reactive to real power must
be preserved in each of the two forms shown in Figure 2.3.1. The power
ratio is defined as

VA

- Q= ) } ' (2.3.1) _

w’
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where VA is the volt-amperes or reactive power, and W is the watts or
real power. For current I entering the series circuit, the reactive power is
{112 Xs and the real power is [1]2Rs. Similarly for voltage V across the
parallel circuit, the reactive power is |Vi2/Xp and the real power is
|V|2/RP. Therefore, no matter what values of I or V exist at the
terminals, (2.3.1) shows that
XS RP .
= o 2.3.2
0 =% =% @32
It is much more convenient to employ loaded Q in the conversion
between forms in Figure 2.3.1 than the more fundamental relationship
between admittance Y and impedance Zs:
1 R -X
Y=G+ jB=rr="g"+ .
=z "R+ x: VR X2
It is conventional to use parallel resistance rather than conductance
(Rr=1/G) and parallel reactance rather than susceptance Xp=1/1B|). In
those terms, (2.3.3) shows that

R, = R,(1+ ¢?), (2.3.4)
and the same expression solved for Q is

0= WRS__I_ - (23.5)

It is important to note that (2.3.5) requires Rp>Rg in every practical case.
The main results of this section are contained in (2.3.2), (2.3.4), and
(2.3.5). These important equations are used countless times and should
be committed to memory.

(2.3.3)

Example 2.3.1. Convert the series impedance 20-j10 ohms to parallel
form. Problem: Find Rp and Xp. Solution: From Figure 2.3.1, Rs=20 and
Xs=-10 ohms. By (2.3.2), Q=0.5; by (2.3.4) Rp=25; and by (2.3.2) again,
Xp=-50 ohms. Note that both the series and parallel equivalents are
capacitive, as denoted by prefixing the negative sign after the formulas
were employed.

2.3.2 Resomnator VAW

Resonators are composed of an L and C, connected either in
parallel or in series, and resonant at some desired frequency, wo:

@, = }/ di7el 2.3.6)

Figure 2.3.2 shows a parallel resonator terminated in a parallel
resistance Rp. If the resonator is resonant at we, then the inductive and
capacitive reactances are equal in magnitude at wo:

Xp=o,L= Y, ¢ (2.3.7



26

Wy
—

—
¢l L/R,

o

Electric Magnetic
Figure 2.3.2. Loaded Q in a parallel resonator.

The stored energy (VA) oscillates between the inductor and the capacitor,
like a balance wheel and hairspring in a watch or a mass bobbing up and
down on a spring, and the real power is delivered to Rp.

The voltage across any of the three elements is the same, but by
(2.3.2), Xp=Rp/Q. Therefore, there is Q times as much current through
the L. and through the C as there is through Rp. The stress magnification
in high Q circuits often cannot be ignored. The same analysis applies to
series RLC resonators, except that there is voltage magnification by the
Q factor. :

2.3.3 Resonator Efficiency

In addition to loaded Q, Qu, which involves real power delivered
outside a resonator, there is unloaded Q, Qu, which involves real power
lost in the I, and C, mainly in dissipative inductances. Concerning the
resonator in Figure 2.3.2, when Rp is disconnected, then Q. is the ratio of
volt-amperes reactive power to that real power dissipated within the
mostly reactive elements.

There is a simple and fairly accurate formula for the power lost in
mildly dissipative (lossy) resonators:

L~ 4.34% dB. ' (2.3.8)

Lo is the approximate power loss in dB per resonator at the resonance
frequency wo. It is significant that bandpass filter midband dissipation
loss is inversely proportional to unloaded Q; e.g., to halve the midband
loss in dB, Qu must be doubled.

Example 2.3.2. Suppose that four resonators like that in Figure 2.3.2
are coupled in cascade by a nearly lossless coupling arrangement. Also
suppose that each resonator has a loaded Q, Qu, of unity. Problem: Find
the midband dissipative loss (i.e. efficiency) in dB when the loaded Q, Q.,
is either 20 or 4. Solution: Using 4 times the value found by (2.3.8) gives
Lo~0.87 dB for Qu=20 and Lo~4.34 dB for Qu=4. These are the cases
shown in the graphs in Figure 2.2.9, where wo=1 rad/sec. There is no flat
(reflection) loss at that band center frequency.
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2.4 Ladder Networlc Topologies

The interconnection of elements or components in a filter or
matching network is called its topology. Lowpass and various types of
bandpass networks have characteristic patterns in their topologies.
Topologies of bandpass networks can be altered by replacing certain
subsets of elements by the same or increased number of elements so as
not to affect the frequency response of the network. Those topologies and
subsets are introduced in this section.

2.4.1 Lowpass Prototype Networks

Figure 2.4.1 shows the two possible lumped-element topologies for
lowpass networks that have a monotonic stopband (as shown in in Figure
2.2.1). These networks are duals of one another as described in Section

’—‘ 000 000 —_—fv-\_—
1 1 & |
8«: \gN Tg3 ﬂ\g 1280~
NOdd °°° NEven (@

000 ooo—/z\——-

G> 25} 1 £
Eq 1 N+ 8N ﬂ\gz go—1

N Odd NEven  (b)
Figure 2.4.1. Dual all-pole lowpass prototype networks.

+ Evn 0 BN

2.4.5. The distinguishing topological feature is with the element next to
the load resistance; it is either in series or in parallel. The input element
is also in series or parallel, depending on the degree of the filter, which is
equal to the number of elements. All series elements are inductors with
reactances that increase with increasing frequency and parallel
capacitors with susceptances that increase with increasing frequency.
Elements are numbered from load to source; the gi values are in henrys
and farads for L's and C’s, respectively. The prototype load resistance, go,
is always unity.

The source immittance real part, gn+i, is shown in parallel ohms
or in series mhos and may not be unity. This convention may seem
awkward, but it accommodates the common practice of assigning gn+1=
for singly-terminated networks. When gn+1 is finite, the Thevenin
voltage source with series conductance and the Norton current source
with parallel resistance are equivalent at the network’s input terminals
and can be interchanged at will.

Figure 2.4.2 shows dual Cauer or elliptic-function lowpass
prototype networks. The topology conventions from Figure 2.4.1 also
apply. The distinguishing feature is the inclusion of capacitors in parallel
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Figure 2.4.2. Dual Cauer (elliptic-function) lowpass prototype networks.

with some or all of the series inductances, or inductors in series with
some or all of the parallel capacitors. These LC branches cause zeros of
transmission at their resonance frequencies in the stop band, as
illustrated in Figure 2.2.8.

For classical broadband impedance matching, it is important to
recognize that the complex load impedance includes element g; as well as
the resistance go in Figure 2.4.1. According to (2.3.2), the loaded Q of a
lowpass broadband matching load is always

O, =8 * &- ’ 2.4.1)
When there is also a complex source impedance (the double match case),
the source impedance includes element gn as well as the resistance or
conductance gn+1. Again, (2.3.2) shows that the loaded Q of a lowpass
broadband matching source is always

Os =8y *8vn- (2.4.2)

As is described in Section 2.5.2, computer program ALLCHEBY accepts
an assigned value for Qi, and perhaps Qs as well, and then find all
element values, gi, to obtain the least-possible insertion loss over the
passband.

2.4.2 Classical Bandpass Prototype Networks

It is very easy to convert lowpass prototype networks into
bandpass prototype networks. Figure 2.4.3 shows that every lowpass
capacitor is replaced with a parallel LLC resonator, and every lowpass
inductor is replaced with a series LC resonator. The parallel resonators
have C=Qpwxgi and L=1/C, where Qsw is defined by (2.2.2). The series
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Figure 2.4.3. Reactance transformations: lowpass elements to bandpass resonators.

resonators have L=Qpwxgi and C=1/I.. This tunes all resonators to w¢=1
rad/s.

It is worth remarking that the replacement of lowpass branches by
bandpass resonators corresponds to a transformation of frequency scale.
Referring to Figure 2.2.2, if the lowpass frequency variable is o' and the
bandpass frequency variable is o, then

’ @ wO
'« ng(wo . ], (2.4.3)
ie., o' is replaced by the right-hand expression in (2.4.3). Multiplying
both sides of (2.4.3) by g gives the reactances or susceptances of the
related branches in the lowpass and bandpass domains; these are zero at
their respective center frequencies. The bandpass group delay response
differs considerably from the lowpass group delay because of the
nonlinearity (versus frequency) of (2.4.3).

Figure 2.4.4 shows the result of setting N=4 and using the lowpass
prototype in the lower right part of Figure 2.4.1, which has the g
inductor in series with the load resistance go. The variable name Qi is
employed in Figure 2.4.4:

Q0 =Quyxg, i=1toN. (2.4.49
4 3
Q  1/Q
1/Q, Q,

Figure 2.4.4. A four-resonator classical bandpass filter.

The significance of Q; is that it is loaded Q. For example, the inductor
labeled Qi in Figure 2.4.4 is in series with the load resistance go=1, and
Qi henrys at 1 rad/s has a reactance of Q1 ohms. By (2.3.2), Q, is the
loaded Q of that series resonator at the band center frequency of 1 rad/s.
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At ®o=1 rad/s, all series resonators are short circuits and all
parallel resonators are open circuits. Therefore, consider the parallel
resonator labeled Q2 in Figure 2.4.4. Looking toward the load, it also
sees the load resistance, go=1 ohm. By (2.3.2), Q2 is the loaded Q of that
parallel resonator at the band center frequency of 1 rad/s. Similar
statements can be made concerning resonators Q3 and Q4. They are
singly-loaded @’s, i.e., any resistance loading a resonator toward the
source is NOT considered. For example, in Figure 2.1.1 the singly-loaded
Q of Zv is X1/R1, whereas the doubly-loaded Q is Xi/(RL+Rs). Only singly-
loaded Q’s are employed in this book.

The L and C conversions from lowpass branches to bandpass
branches in Figure 2.4.3 also apply to the Cauer topologies in Figure
2.4.2. For the case where capacitors have been added in parallel with
series inductors, as in the lower part of Figure 2.4.2, the transformed
bandpass branch appears as in Figure 2.4.5. For the case where inductors

—
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A - —— —{ H }
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Figure 2.4.5. Conversion of series lowpass traps to bandpass branches.

have been added in series with parallel capacitors, as in the upper part of
Figure 2.4.2, the related bandpass branch appears as in Figure 2.4.6.

I —1— VI

LP to BP

Ly

_T T e
Figure 2.4.6. Conversion of parallel lowpass traps to bandpass branches.

There are various other equivalent topologies for these bandpass
branches [Cuthbert,1983:470-3], but they are not useful in direct-coupled
filters as developed in Section 3.4.3.3.
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There are high impedance levels in the middle of the series
resonators at nodes 1 and 3 in Figure 2.4.4 when the Qs are much
greater than unity. Loaded Qs may exceed unity when the passband
width is less than 100%, according to (2.2.2) and (2.4.4), because the gi
values vary about unity. At the midband frequency of 1 rad/s, (2.3.4)
shows that the parallel resistance at node 1 in Figure 2.4.4 looking
toward the load, for example, is Rp=(1+Qi2) and Xp=—(1+Q12)/Q:. For
Q1>>1, Rp~Q:2 and Xp~—Q1, which can cause several problems:

o Midband voltages to ground at series nodes 1 and 3 are
(1+Q2)*%x Vo, where Vo is the load voltage. These voltages
appear across equivalent parallel resistances as
described and scale with load voltage because of power
conservation in this lossless network,

o Stray capacitance to ground from nodes 1 and 3 is likely
to exist in the physical network. If the normalized stray
capacitance is not considerably less than 1/Q farads, then
the filter impedance levels will be significantly different
from what is required, and

o The respective ratios of series to parallel L. values are
Q2%1; the same is true of the ratio of extreme values of C
as well.

Example 2.4.1. Suppose that the classical bandpass network topology
for N=4 in Figure 2.4.4 is a doubly-terminated minimum-loss filter
having 20% 3-dB bandwidth. Problem: Find the voltages to ground at
nodes 1 and 3 relative to Vo, and find the equivalent parallel reactance
looking toward the load from those nodes, all at the midband frequency of
1 rad/s. Solution: From Figure 2.2.4, gi=1.650 Vv (“for all”) i. By (2.2.2),
20% bandwidth implies Qpw=5, and, by (2.4.4), Qi=8.25 V i. By (2.3.4),
the equivalent parallel resistance seen toward the load from nodes 1 and
3 i1s 69.06 ohms. Voltages across parallel resistances are proportional to
the square root of resistance, so the voltages to ground from nodes 1 and
3 are ¥69.06xV=8.31xVo.

2.4.3 Direct-Coupled Prototype Bandpass Networks

Figure 2.4.7 shows four direct-coupled parallel resonators; in
general there can be any number of resonators. The “A” symbol stands

Qi %f%l FE %@%‘%

QA"R, Qs*R, QQrR, Qg™

Figure 2.4.7. Direct-coupled network topology with only parallel resonators.
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for an L or a C or a parallel-LC-trap coupling branch in series. A top
coupling “~” between nodes E and F might also appear between the
source and node A, or there might be no terminal top couplings at all. An
even more specific example is shown in Figure 2.4.8. It 1is often
unnecessary to have an equal number of L and C couplings in narrow-
band direct-coupled filters; however, coupling constraints for the
broadband case are described in Section 3.6. A top coupling L is also
equivalent to using an RF transformer; see Section 2.4.4.

L !
QR Q> R, QrR, Q"R
Figure 2.4.8. An N=4 direct-coupled elliptic filter with LCLC couplings.

Corresponding to the parallel resonator topology in Figure 2.4.7 is
a “dual” case that employs only series resonators and L, C, and series-LC-
trap coupling branches in parallel. The topology using series resonators
is often advantageous in low impedance environments. The simple
method for obtaining dual networks is described in Section 2.4.5.

The direct-coupled network using only parallel resonators in
Figure 2.4.7 can overcome the disadvantages just listed for the classical
bandpass network in Figure 2.4.4 when passhand widths are less than
100%:

e Top coupling branches in Figure 2.4.7 enable control of

the midband parallel resistances Ra,, Rp, etc. and
- therefore control of node voltages to ground,

e Any stray capacitance to ground is absorbed into a
resonator, and

e The range of extreme values of L's and of C’s can be
minimized because of the wide range of feasible parallel
resistances that do not affect the network’s selectivity.

2.4.4 Transformations in Bandpass Networks

Lowpass filter topologies, Figures 2.4.1 and 2.4.2, do not present
two elements of like kind alone in adjacent branches, but that does occur
in bandpass topologies. For example, in Figure 2.4.8, there are three L's
alone in adjacent branches: Lj, Liz, and Ls. This occurrence allows
substitution of an equivalent subsection that does not affect the
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frequency response. The substituted subsection may offer a more
desirable topology or more acceptable element values.

The T-to-Pi and Pi-to-T (also called star-delta) transformations
involve three elements of like kind. Figure 2.4.9 shows the subsection
topologies, where the Z’s could be all L's or all C’s. Figure 2.4.10 shows a
transformation for three L's in a Pi (or an equivalent T) that is equivalent
to an RF transformer with primary and secondary windings. A table of
these transformations with equations is available [Zverev:529].

z1 72 Zc
Z3 Z, Z,

L=L 5 +4L,+2) 7,

Zs=Z +Zy+7,,
Ze=0{2, Z=Z, Zc/Zs
Z,=72[z,, 7%=2, Z|Z
ZB=ZT/Z’ Z=Z,72,/Z.

Figure 2.4.9. Equivalent T and Pi configurations.

L2

L.,M LaM
L, C, - L,~™M

B

Figure 2.4.10. An RF transformer and its equivalent inductive Pi subsection.

The Norton transformation involves two L's or two C’s alone in
adjacent branches. Figure 2.4.11 shows that if an ideal transformer is
inserted to one side of the two C’s, then that is equivalent to three
capacitors. A similar el section of inductors and a transformer has an

n:l é”'“_"" . i B

A
I -
r e
n*Z Z n?Z
(a) (b)

Figure 2.4.11. A capacitive Norton transformation.
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equivalent Pi of inductors. All Norton transformations preserve the exact

frequency response. The transformer turns ratio, n, depends on the
values in the el section but is restricted to a limited range above or below
unity for all elements in the equivalent Pi to be positive. Insertion of a
transformer in a network requires impedance rescaling by n2 of all
networks elements to one side of the transformer.

For example, Norton transformations can be applied to the
network in Figure 2.4.4. Note the el section composed of the capacitors
having values 1/Q3; and Q2. An ideal transformer can be inserted to the

' left of that el section at node 3, requiring values of inductors Qs and 1/Qq
and resistance gs to be decreased and capacitor Q4 increased by the
square of the turns ratio, n2 Insertion of the transformer creates the
Norton transformation between nodes 2 and 3 depicted in Figure
2.4.11(a). That section can be replaced by the Pi section shown in Figure
2.4.11(b). Additionally, a second Norton transformation could be applied
to the two adjacent inductors in Figure 2.4.4 that originally had values
1/Q4 and Q3 with further adjustments of impedance levels. Formulas for
the three C's and three L’s are straightforward [Borlez:84], but can be
avoided entirely by the techniques in Section 3.4. Piecemeal applications
of Norton transformations are always possible, but it is difficult to
visualize potential benefits to ranges of element values and current or
voltage levels in large networks {Zverev:530-533].

Also, four-element branches consisting of two L’s and two C’s occur
in bandpass elliptic function filters to produce pairs of transmission
zeros. Replacement of those branch topologies is discussed in Section
2.5.3.

2.4.5 Duality

Every LC network has a dual topology that has identical
responses. For example, the two lowpass networks in Figure 2.4.1 are
duals. There are a few simple rules to obtain a dual network:

» Change every parallel branch into a series branch and
every series branch into a parallel branch,

o Change those elements that are in series within a branch
to be in parallel and those elements that are in parallel
within a branch to be in series (compare Figures 2.4.5
and 2.4.6), :

¢ Change each inductor to a capacitor and vice versa while
retaining its numerical value; i.e. 3 H becomes 3 F,

e Change each resistance to a conductance and vice versa
while retaining its numerical value; e.g. 5 ohms becomes
5 mhos, and

s Change voltage sources into current sources and vice
versa. :

/
{
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It is stated in Section 2.4.3 that nodal (parallel resonators) direct-
coupled networks have a mesh (series resonators) dual. For example, the
dual of the network in Figure 2.4.8 appears in Figure 2.4.12, where all
the rules given above appiy.

Ry L, C4{ %I{Q L:3 Icﬂ:L2 I%__Kc,[ %

43 2

Es TC43 %Ln G T Ll? Ry

Figure 2.4.12. The mesh network with series resonators dual to Figure 2.4.8.

2.5 Network Component Yalues

The conventional way to design filters is to start with some
lowpass prototype network element values, gi, for use as a lowpass
network or for conversion to a bandpass network. There are some
advantages to just making all the g equal. But for greater variety of
response shapes there are numerous tables of prototype lowpass element
values, some being normalized to 1 rad/s where the ripple ends as in
Figure 2.2.1 [Matthaei, 1964:100-102;109], and others to 3 dB no matter
what the ripple and/or flat loss [Zverev,1967:312-340], [Williams,
1991:Chap.11]. It is also possible to use an arbitrary {gi} set.

A convenient program is described that generates all cases of
equal-ripple passband responses for all-pole (monotonic stopband) filters.
Cauer filters and the similar inverse Chebyshev filters can be designed
by tables and programs that provide lowpass prototype element values.
Comprehensive equal-ripple filters having arbitrary zeros described in
Chapter Four must be designed by polynomial synthesis. Examples are
provided for the classical filters; design of direct-coupled and broadband
matching networks is treated in Chapters Three and Five, respectively.
In every case, frequency and impedance scaling are required.

In the case of narrow-band, direct-coupled networks, it is possible
to start with the bandpass structure and assign somewhat arbitrary
component values that are easy to calculate, as explained in Chapter
Three.

2.5.1 Equal-Element Lowpass Prototype

It is mentioned in Section 2.2.2 that the equal-element or
minimum-loss response shape resulted from making all the g; elements in
the lowpass prototype network in Figure 2.4.1 identical. Although
sometimes used in the lowpass topology, more often that is a step toward
design of bandpass filters, in either the classical topology, Figure 2.4.4, or
the direct-coupled topology, Figure 2.4.7. In bandpass cases, equal-
element designs mean equal loaded Q’s and equal resonator efficiencies
for uniform dissipation (Section 2.3.3).
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For either doubly- or singly-terminated networks having equal
elements, the response shapes can be calculated and displayed in an
organized way [Cuthbert,1983:314-319]. However, this class of filters is
unique in that the frequency response shapes are easily displayed as
functions of QL/Qu, 1.e. in the presence of even large dissipation quality
factors [Taub,1963,1964]. As shown in Figure 2.2.4, only low-degree,
lossless equal-element filters have a reasonable passband ripple value,
especially for the singly-terminated filters.

Example 2.5.1. Given a lossless four-resonator bandpass filter like that
in Figures 2.4.4 or 2.4.7, suppose that a passband width of 165% is
required. Problem: Find the resonator loaded Q’s for the doubly-
terminated equal-element shape. Solution. According to (2.2.2),
Qew=0.6061. Figure 2.2.4 shows that gi=1.650, so that (2.4.4) yields
Qi=1.000 V i. The bandwidth was selected so that each element in the
bandpass prototype network in Figure 2.4.4 is equal to unity, as are all
the resonator loaded Q’s in Figure 2.4.7.

2.5.2 Program ALLCHEBY.EXE

The equal-ripple response shape shown in Figures 2.2.1 and 2.2.2
is often required for both filter and broadband impedance matching
problems. Either network category could be lowpass or bandpass and
doubly or singly terminated, and might have flat loss as well as ripple.
However, the broadband matching problem assigns a loaded-Q value for
one end of the network and perhaps for the other end as well; see (2.4.1)
and (2.4.2). In that case, there will be flat loss obtained by unequal
terminating resistances.

All these various cases are solved by program ALLCHEBY.EXE as
displayed by the flowchart in Figure 2.5.1. The program starts with the
option of asking for two passband edge frequencies in any units; then the
%BW and normalized (0wo=1) bandpass edge frequencies are returned.
The problem is either filtering or broadband matching. The various two-
port termination combinations are illustrated in Figure 2.5.1. In
particular, infinite Qs is a singly-terminated case that matches a
resistance or loaded resonator to an ideal source over a frequency band.
In all doubly-terminated cases, the ripple and flat loss are determined in
terms of dB insertion loss, reflection return loss, and SWR. For
broadband matching cases, the least-possible insertion loss when using a
matching network having infinite complexity (N—»w) is given to add
significance to the result for the selected value of N, N<15.

All gi and Q; values are computed assuming load resistance go=1.
Also, the geometric mean loaded Q is reported as an average stored-
energy indicator approximating an equal-element network. (The sig-
nificance of loaded-Q product is described in Section 3.3.1.)

s
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ALLCHEBY.EXE
95=1=R,
LP %BW=100
1 Broadband
I—' Filters ) Matching
‘Singly-Terminated l Rg l
lDouny-Termlnatedl N, Q, %BwW=?
i o, =7 1
N, Ripple, %BW: I — -
: N, Flat Loss, Optimal Qg Given Qg=? Qs Infinite
Ripple, %BW=? | | Minimize Max S,, dB If Qs>Qy, g=Rg dB Ripple =...
LA I

Max/Min dB, SWR =,
All gi, Qi, Mean G = ..

1

Any Lg(ff) = ...
Any L(Q.)=..

Restart or Quit

Figure 2.5.1. Flow chart of filter and matching program ALLCHEBY.EXE.

The exact Chebyshev insertion loss for lossless networks can be
calculated for any given frequency. The normalized bandpass frequencies
for 20-dB insertion loss are reported automatically to quantify the
passband-to-stopband transition. For any solution, ALLCHEBY can
estimate the midband dissipative loss given a uniform unloaded Q, Qu,
according to (2.3.8).

The theoretical origin and details of program ALLCHEBY are
provided in Section 5.2. Two anomalies that arise in double-matching
situations are discussed in Section 5.2.5. The emphasis here is on the
ease of obtaining equal-ripple networks without resorting to tables and
nomograms that may not be available or even exist.

Example 2.5.2. The requirement is for a four-resonator 0.1 dB equal-
ripple filter having 50% bandwidth and the classical topology shown in
Figure 2.4.4. Problem: Find all element values for the normalized filter.
Solution: Program ALLCHEBY.EXE produced the data shown in Table
2.5.1. The lowpass prototype corresponds to the lower half of Figure 2.4.1,
because the resonator next to the load is in series with the 1-ochm
resistor. In Table 2.5.1, the corresponding left-hand sequence Lser,
Cpar, etc. ends in Ohms for G(5), i.e. g5=1.3554 ohms. There is a ripple
loss peak at the midband w¢ in the bandpass topology corresponding to dc
in the lowpass topology. Because the respective network input



38

impedances at those frequencies are 1 ohm, it is easy to confirm the 1-dB
ripple using (2.1.10) and (2.1.11) with Ri=gs.

Table 2.5.1. ALLCHEBY.EXE Output for Example 2.5.2.

Is this a Matching or a Filter (QL~=0=QS) network (_,F)? F
Is this filter Singly- or Doubly-terminated (S,_)? D

N, dB FLAT LOSS, dB RIPPLE, %BW =7 4,0,.1,50
THIS INSERTION LOSS FROM 0.0000 TO 0.1000 dB
THIS dB FLAT LOSS = 0.0000

THIS dB RIPPLE = 0.1000

SWR FROM 1.0000 TO 1.3554

RETURN LOSS FROM 120.0000 TO 16.4276 dB
Lseror Cpar G(1)=1.1088 Q(1)= 2.2176
Cparor Lser G(2)=13062 Q(2)= 2.6124
Lseror Cpar G(3)=1.7704 Q(3)= 3.5407
Cparor Lser G(4)=0.8181 Q(4)= 1.6362

Ohms or Mhos G(5)=1.3554

GEOMETRIC MEAN LOADED Q = 2.4069

2.5.3 Elliptic Function Lowpass Prototype

The lowpass prototype network topology for Cauver and Inverse
Chebyshev filters is shown in Figure 2.4.2; these are filters that have
equal-ripple or maximally-flat passbands, respectively, and poles of
attenuation in the stop band. Lowpass Cauer filters can be designed
using tables [Zverev] and programs [Cuthbert,1983:358-362], and
lowpass inverse Chebyshev filters can be designed using some less
common tables [Christian,1975:144], [Taylor].

Conversion of lowpass elliptic filters to classical bandpass forms is
accomplished by replacing C’s with parallel L.C’s and replacing L’s with
series LC’s as shown in Figures 2.4.3, 2.4.5, and 2.4.6. An added
difficulty with the bandpass case results from the branches that produce
the poles of attenuation in the stopband. These pairs of frequencies, say
o_ and o+, are geometrically related to the band center frequency wo:

W xo,=0). (2.5.1)
Each pair of bandpass “trap” frequencies is found from the related
lowpass “trap” frequency, Q,, found in tables:

o\ (o
@-= ”(m,,w) '(mw)’ @52

when ®wo=1 rad/s so that o+=1/wo_.

The branch topologies in Figures 2.4.5 and 2.4.6 (called dipoles) can be
replaced with any of several other topologies that do not change the
impedance characteristic; these were given by [Zverev:524-526] and
reproduced [Cuthbert,1983:Appen.H]. Those replacements are often
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required to avoid high voltage points or to try for a better set of branch
element values. Because the direct-coupled networks in Section 3.4.3.3
avoid these difficulties entirely, no further details of special
transformations in elliptic function filters are described here.

2.5.4 Scaling

Impedance and frequency scaling of networks is convenient and
enhances optimization. It is easy to rescale the normalized solution:

o Given an increased actual terminal resistance level,
increase all R’'s and L’s and decrease all C’s by that
factor, and _

o Given an increased band center frequency in rad/s,
decrease all L's and C’s by that factor.

Impedance and frequency scaling do not affect the loaded Q’s. Program
DENORM.EXE simplifies scaling and rescaling and avoids many errors.

Example 2.5.3. Example 2.4.1 showed that the N=4 equal-element
bandpass filter in Figure 2.4.4 had element values of Qi=8.25 and
1/Q=0.1212 V¥ i for a 3-dB bandwidth of 20%. Problem: Denormalize
those element values from 1 ohm and 1 rad/s to 50 ohms and 100 MHz
center frequency. Solution: Table 2.5.2. shows the user’s interaction
(<CAPS LOCK> is required) with program DENORM (with some
annotation). Command 1 entered impedance factor 50, command 2
entered units 1E6, 1E-9, and 1E-12 for MHz, nanohenrys and picofarads,
respectively, and command 3 entered frequency 100. Command 4 used
the normalized reactance woL (=gixQpw), which is just the normalized
inductance at 1 rad/s. Normally, the frequency, units and impedance
factor are displayed before each answer. Commands 5-7 were not
required in this case. Therefore, inductances are 656.5 nH in series and
9.6 nH in parallel; capacitances are 3.86 pF in series and 263 pF in
parallel. The load resistance is 50 ohms.

Table 2.5.2. DENORM.EXE Output for Example 2.5.3.

**xx* MENU for DENORMalizing (Do 1, 2, & 3 First) ***#*»

1. ENTER IMPEDANCE SCALING FACTOR (Default is Unity).

2. ENTER FREQUENCY AND L,C UNITS

3. ENTER FREQUENCY.

4. COMPUTE L & C GIVEN REACTANCE (or Normalized Inductance).
5. COMPUTE L & C GIVEN SUSCEPTANCE (or Normalized
Capacitance).

6. ENTER L AND COMPUTE IMMITTANCES AND RESONATING C.
7. ENTER C AND COMPUTE IMMITTANCES AND RESONATING L.
8. EXIT DENORM

kkkkkkkhkkkdkhkkkhkhdikhhkkhkhkhkdkhhkkdkkkhhkhrkkkdhhhrrdid
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Table 2.5.2. (Continued) (After commands 1,2, and 3)
INPUT COMMAND NUMBER:? 4
FREQUENCY = 100.0000 WITH UNITS = 1.E+06
INDUCTANCE UNITS = 1.E-09
CAPACITANCE UNITS = 1.E-12
IMPEDANCE SCALE FACTOR = 50.0000
REACTANCE (OHMS) =? 8.25 (User input)
INDUCTANCE = 656.5141
CAPACITANCE = 3.8583
PRESS <RETURN> KEY TO CONTINUE -- READY?
INPUT COMMAND NUMBER:? 4
REACTANCE (OHMS) =? 0.1212 (User input)
INDUCTANCE =  9.6448
CAPACITANCE = 262.6319

2.6 Network Analysis

As a prelude to specific developments in subsequent chapters, the
characterization of linear two-port networks by chain (ABCD) and
scattering matrices is reviewed. The Hilbert transform is briefly
described, because certain paired response data are interrelated, i.e.,
dependent. That is an essential component in the current academic
approach to broadband impedance mapping.

2.6.1 ABCD Two-Port Parameters

Figure 2.6.1 shows a linear two-port; the output current is
assumed to be leaving the output (b) port. A network is said to be linear
if:

1. All voltages and current scale, i.e., if one i1s doubled, so

are all the others, and

2. Superposition applies, i.e., the presence of sources with

multiple frequencies does not generate additional

frequencies.
Ia Ib
H—k— —t>—_e
| Lines
inear
Va Network Vb
o0— —_——

Figure 2.6.1. A linear two-port network with port voltages and currents.

The ABCD parameters are the coefficients in one of many possible sets of
linear equations relating port voltages and currents:
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V,=AV, + BI,
I,=CV,+DI,.

Matrix notation in linear algebra allows a more compact equivalent

expression:
£ A B 2.6.2
I,| | c Dl (2.6.2)

The two vectors are matrices with only one column. It is convenient to
denote the ABCD matrix as T: -

|4 B
T= c pl (2.6.3)

The convention for deciphering (2.6.2) is that V,, being in the first row
and first column of its vector is related by superposing the first row of T,
(A B), on the first column of the cutput vector and then adding the
respective products, i.e. Va=AxV,+BxIp. Similarly, I,, being in the second
row and first column of its vector is related by superposing the second
row of T, (C D), on the first column of the output vector and adding the
respective products, i.e. I,=CxVy+DxI,. The utility in matrix notation is
that 1t is just as compact when there are more than two equations in two
unknowns. Generally, all the quantities in (2.6.1) and (2.6.2) are complex
numbers.

2.6.2 Cascading Two-Port Subnetworks

The value of the ABCD formulation is in cascading two-port
subnetworks as shown in Figure 2.6.2. Observing that adjoining input

(2.6.1)

l1 n4

—>— ——> P> ——0
+ N + N + N -+
Vv, 3 2 N 3 Vg
G < & —

Figure 2.6.2, Cascaded subnetworks with common port voltages and currents.

and output port voltages and currents are shared, (2.6.2) shows that the
overall chain matrix for the three subsections is

Ta=TxT, xT;. (2.6.4)

One application is finding the ABCD parameters for a ladder network
that consists of a cascade of series impedance branches and parallel
admittance branches. Consider the two branches in Figure 2.6.3.

Figure 2.6.3. Cascaded series and parallel branches in a ladder network.
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The ABCD matrices for those branches and their composite are

(1 Z)(l o) (1+ZY Z]
o Yy YT\ v U (2.6.5)

This example not only further illustrates the rules for matrix
multiplication; it shows that there are several multiplications by the
factors 1 and 0. It is shown in Section 6.2.3 that there are more efficient
ways to obtain the ABCD parameters numerically.

If a network is lossless, then A and D are purely real, C and D are
purely imaginary, and determinant AD-BC=1.

Example 2.6.1. Let Figure 2.6.3 represent a lossless lowpass network
having Z=jol, and Y=joC. Then A=1-02L.C, D=1, both real. Also, B=joL
and C=joC, both imaginary. Notice that AD-BC=1.

2.6.3 Scattering Parameters

Figure 2.6.4 again shows a linear network where the port
parameters are power waves [Kurokawa]. Waves a; and ag are incident

o— -0
a;—» Any } @—3,
Linear
b;<— | Network| —® b,
e ©

Figure 2.6.4. A linear two-port with incident and emerging power waves. 7

and waves b1 and bz are emerging at their respective ports. The power
incident on the input (left-hand) port is the maximum available power
from a source as shown in (2.1.1):

| = £, (2.6.6)
and the net power delivered to a load connected to the right-hand port is
2
P, =l - |a,| - 2.6.7)

The complex a and b port variables are linearly related by complex
(scattering) coefficients:

bl Sll SIZ al 2 6 8
b2 - SZI S22 aZ . ( . ,‘ )

The magnitudes of port variables ¢ and b can be considered to have
dimensions of the square root of power. Port variables can be normalized
to their respective resistances or impedances [Cuthbert,1983:93].

With any set of linear equations, it is important to interpret the
meaning of each coefficient. Consider the meaning of S21 in the
scattering parameter case; the second equation in the shorthand of (2.6.8)
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is by=S21a1+Sz202. Suppose a2=0, which implies a conjugate match at port
2; under that constraint, Sgzi=bg/a;. Therefore, 'Sm [2 is the power
delivered to the load relative to the power available from a source,
according to (2.6.7). Note that a»=0 in Figure 2.6.4 means that there is
no power reflected from the load. In the ordinary case, that means the
load is 50 ochms (or 1 ohm if normalized), i.e., a “flat” load.

2.6.4 Special Relations for ABCD Parameters
The case just mentioned is shown in Figure 2.6.5. Of interest is

o
8> | ABCD|
s 10
by -t>
€=

Figure 2.6.5. A flat-terminated two-port with incident and emerging waves.
the expression for Sgi in terms of that network’s ABCD parameters:

2
= =0. .6.
S A+B+C+D’ " (2.6.9)

A similar but more general expression is given in Section 5.4.2 for the
case where there is both a complex source and a complex load.

The input impedance of a two-port network as a function of the
ABCD parameters and a complex load impedance, as shown in Figure
2.6.6, is easily derived using (2.6.1):

. AZ, + B
Z,=R,+jX,= Cz,+D (2.6.10)
This is just one of many important situations where the bilinear form in
(2.6.10) occurs as a mapping of one network terminating impedance (Z)
into another port parameter (Zin). A bilinear function is linear in either
variable, in this case in either Zi, or Zs.

. Ol

Zn—= | ABCD

O

Figure 2.6.6. Input impedance of a twc;-port with arbitrary load impedance.

2.6.5 Hilbert Transform

One form of the Hilbert transform relates the input resistance and
reactance of any linear ladder network. For example, if the input
resistance, Rin, is known over all frequencies, then the reactance, X, at
any particular frequency, say, o, is
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X, ((0) = %T.I:‘"_(J;z

—a

dy., (2.6.11)

where y is a dummy variable of integration. Because resistance is an
even function of frequency and is often band limited, evaluation of
(2.6.11) with finite limits of integration is not a problem. In practice,
even more simple integrations are possible; see [Cuthbert,1983:219-222]
and [Carlin,1998]. The Hilbert transform plays a major role in the real-
frequency broadband matching technique in Section 5.3.2.

A

o Hilhert
0.6 Network analysis
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Figure 2.6.7. Input resistance and negative reactance for Example 2.6.2.




45

Example 2.6.2. Consider the N=3 lowpass network terminated by a 2.2-
ohm resistance in Figure 2.6.8. An analysis of its input resistance, Rq, at

63%1

. 2.890 H
Ro*iXe L 4 220
I /‘ﬁ
0.350 F 0.931F
o

Figure 2.6.8. An N=3 lowpass network for analysis in Example 2.6.2.

a number of frequencies could be accomplished using the methods
indicated in (2.6.5) and (2.6.10). The result is plotted in Figure 2.6.7.
The negative of the reactance, —Xg, is also plotted using the triangle
symbols. The square symbols represent —Xg computed by (2.6.11); clearly
the values by analysis and theory agree completely. Also, the network
must have the “minimum reactance” property, i.e., in Figure 2.6.8 any
series reactance added at the input terminals would not affect the input
resistance function employed in (2.6.11) and thus could not affect the
reactance computed by the Hilbert transform. See Section 2.1.5.

2.7 Summary of Fundamenials

For the purposes of this book, the fundamental concepts concern
power transfer versus frequency, ladder network topologies and element
values, and certain two-port network parameters. The loaded Q
parameter is involved in several important ways, and the Hilbert
transform is mentioned for the role it plays in current academic
broadband matching methods.

Power transfer from a complex source through a lossless network
to a complex load is the doubly-terminated situation, where the power
can be no greater than some maximum available power that depends on
the source resistance and source voltage or current. A generalized
reflection coefficient is the comprehensive tool for determining the power
and understanding the related impedance mappings (Appendix A).
Power transfer from a lossless source through a lossless network to a
complex load is the singly-terminated situation, where the power depends
on the network input resistance or conductance and the source current or
voltage, respectively.

The power versus frequency selectivity curve for a lowpass network
is conventionally reproduced in a related bandpass network with
appropriate scaling of the frequency axis. For purposes of ithis book,
there are only a few passband shapes with certain properties of interest,
such as ripple and flat loss. The stopband selectivity shape either is
monotonic for all-pole networks or contains poles of attenuation (zeros of
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transmission) for the elliptic-function and comprehensive cases. In every
doubly-terminated case, the related frequency behavior of the network
reflection coefficient is of interest. Presence of dissipation in the two-port
network causes effects that have predictable properties that can be
anticipated if not simply compensated.
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3. Direct-Coupled Filters —

Direct-coupled filters are bandpass ladder networks in dual forms
of either all parallel resonators or all series resonators coupled in cascade
by one or two reactive elements. A resonator consists of an LC pair that
is tuned to the geometric band center frequency as described in Section
2.2.1. Direct-coupled filters have advantages in impedance, voltage,
current, stray capacitance, and element value control that are not
available in the classical bandpass network topology, which consists of
alternating parallel and series resonators. Direct-coupled filter topologies
carry to the limit certain alterations to the classical bandpass topology
often made piecemeal, using Norton transformations,

Direct-coupled filters can be realized in a wide variety of physical
forms, particularly at microwave frequencies. In any frequency range,
the concept of inverters (ideal 90-degree transmission lines) that connect
the resonators is a vital and simplifying tool; both resonators and
inverters exist in many physical forms. Ideal inverters provide control of
the resistance level at each resonator without affecting the filter’s
selectivity. In turn, those resistance levels enable control of element
values and voltages and currents in simple and highly visible ways.
Direct-coupled filters are easy to tune because of the inverters. Inverters
also can incorporate stopband anti-resonances that provide the elliptic-
function (Cauer) or comprehensive filter responses.

Finally, direct-coupled filters can be designed using the unifying
loaded Q parameter as a meaningful guide for element values, selectivity,
dissipation, sensitivity, and tuning. The effect of resonator loaded Q’s and
inverters on stopband selectivity is easily recognized in a simple Bode
(semilog) graph. Resonator loaded Qs are also involved in straight-
forward design alterations to eliminate the passband distortion caused by
non-ideal inverters as well as to avold any negative element values.
Elimination of passband distortion allows direct-coupled filters to escape
their traditional limitation of being useful only for very narrow
passbands; now they can be free of passband distortion over any band
width.

3.1 Prior Technology

Bandpass filters have been an important part of radio engineering
for at least 70 years, so it is important to identify those contributions that
were stepping stones to direct-coupled filters as described in this chapter.
An early example of a two-resonator filter was the intermediate
frequency (I.F.) transformer that was crucial to the superheterodyne
receiver introduced early in this century. It consisted of an RF
transformer resonated on both primary and secondary sides by
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capacitors. It is shown that a Pi of inductors that is equivalent to the
transformer (Figure 2.4.10) contains an inverter flanked by inductors
that, when resonated by capacitors, complete the primary and secondary
resonators and thus the direct-coupled filter. More explicit recognition of
coupled resonators is described in this section.

3.1.1 Classical Filters

Coupling coefficients were defined for adjacent parallel and series
resonators in the classical bandpass filter topology (Figure 2.4.4) [Dishal,
1959]. For example, if a parallel resonator having capacitor C; was
followed by a series resonator having capacitor Ci+1, then Dishal defined a
coupling coefficient

K’?"*‘ = q%. = Yo o = yQi O - Yszgigm ’ @11

The three equalities on the right side of (3.1.1) follow from Figure 2.4.4
and (2.4.4). Because the bandpass network in Figure 2.4.4 depends on
the lowpass prototype network in Figure 2.4.1, a related lowpass coupling
coefficient was defined as well {Green,1954]:

2 1
ki,i+l - /gi i , (31.2)
so that ki;+1 is a normalized coupling coefficient:

k..
K. =" . 3.1.3
£+t ABW ( )

Green was mainly concerned with lowpass networks, where Qpw=1.

3.1.2 Coupled Resonator Concept

Figure 2.4.7 shows adjacent parallel resonators top coupled by L,
“~” symbol. By writing
the nodal equations for the transfer function, it was noted that the
assumption of frequency independence of the top coupling elements
produced the same transfer function obtained from classical filters having
both kinds of resonators [Dishal, 1949]. These constant reactance
couplings have been used extensively in narrow bandpass filter design
methods [Humphery].

Tables of normalized terminal Qs and coupling coefficients, ¢ and
k respectively, have been published in several resources [Zverev,:341),
[ITT,1975]. The two normalized terminal ¢’s are:

0 =0/0w, i=1&n. (3.1.4)
The constant reactance coupling elements between nodes i and ) are

defined by
_G/
K, = //’c_cj (3.1.5)

and there is a similar definition in terms of inductances for coupling Ls;.
The constant-reactance design procedure begins with choice of a terminal
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resistance at one end of the filter. Then that unnormalized Q, e.g., Qi,
determines the adjacent resonator capacitor, Ci. The next step uses
(3.1.3) and (8.1.1) to find the capacitance in the next resonator and (3.1.5)
to find the coupling capacitance, Ci2. For the remainder of the filter, only
the coupling coefficients are required until reaching the opposing
terminating resistance, which is found by (3.1.4).

Dissipative elements have been anticipated by means of uniform -
predistortion of the response. Assuming that all I's and C’s in the filter
have the same unloaded Q factor, Qy, then the real parts of the response
function roots can be predistorted in the Laplace frequency s plane by the
factor:

9o = Q./Opw - (3.1.6)

The predistorted network element values are synthesized in the
frequency variable (s—1/qo). Tables are arranged according to decreasing
values of go, from infinity (lossless) to some low value (very dissipative
elements) [Zverev:341].

The next few sections show what the older coupled resonator
design techniques did not explicitly identify: resonator loaded @Q’s,
inverters, and the vital set of parallel resistances.

3.2 Properties

This section describes the prototype direct-coupled filter composed
of resonators, inverters, and optional end couplings. The properties of
these three main ingredients are described.

3.2.1 Topologies

The prototype direct-coupled filter network is shown in Figure
3.2.1. It is composed of resonators at each labeled node (I, II, ...) that are

® ¢ =Y radian/ sec.
| !
= | Te
]

: ¢
Qy k, are=T Qs

Figure 3.2.1. Prototype direct-coupled network with parallel resonators.

each tuned to the passband center frequency wo, usually 1 rad/s. The
resonators are connected by ideal inverters that act as frequency-
independent 90-degree transmission lines; the node voltages are shown to
differ by that phase angle. A network that is the dual of Figure 3.2.1
would contain series LC resonators connected by 90-degree ideal
inverters; see Figure 2.4.12.
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At oo, the resonators appear to be open circuits. The parallel
resistance following the last resonator in Figure 3.2.1 is transformed to
another parallel resistance at the next-to-last resonator by an inverter;
similarly, the other inverters determine all internal parallel resistances,
until resistance Ri appears at the input resonator. The input resistance
R may not match the source resistance, Rs, if there is to be a flat loss or
doubly-terminated ripple response, and Rs is not present at all for singly-
terminated applications. These easily observed internal parallel
resistances are not considered in the older design procedure in Section
3.1.2, involving terminal Q’s and coupling coefficients, Kj;.

The end resistances R; and Rn shown in Figure 3.2.1 may be
obtained by end couplings, so that the fixed physical source and load
resistances do not limit design choices. Figure 3.2.2 shows one possible
end coupling arrangement based on 1+Q2? conversion of a parallel RC
subnetwork into an equivalent series RC subnetwork at wg. Other end

1+ Q2

§ 3 ..__i
T Ru_) R¢

Figure 3.2.2. End coupling by 1+Q?2 to control terminal resistance level.

coupling arrangements include RF transformers, Figure 2.4.10, or tapped
reactances. These narrow-band end-coupling possibilities have been
summarized in a convenient table {Zverev:567], and a similar design step
for tapping into terminal coaxial resonators has been described
[Dishal:1965].

As an aside, it is useful to note that the direct-coupled filter
prototype topology in Figure 3.2.1 could be enhanced by bridging one or
more non-adjacent nodes, e.g., an L or C coupling element from node I to
node N. These can produce transmission zeros above and/or below the
passband in real frequency or on the real axis in the Laplace s plane.
The latter can improve the group delay response. A qualitative summary
is available [Johnson], but the new “CQ” technique efficiently implements
both lumped-element and microwave filters [Levy,1995]. Non-adjacent
node bridging techniques are beyond the scope of this book.

3.2.2 Resonators

The parallel LC resonators in Figure 3.2.1 have loaded Q values
that are established by the desired response shape and bandwidth. Each
given loaded Q can be realized in terms of the parallel resistance and
resonator reactance values at wo according to (2.3.2). The inverters
described in the next section enable wide ranging choices of parallel
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resistance, so that both resonator and inverter element values can be
controlled as desired without affecting the filter response.

The parallel LC resonators in Figure 3.2.1 could be replaced by
many other resonant structures for use in narrow-band filters, e.g.,
shorted transmission-line stubs that are 90 degrees at wo, or less than 90
degrees and capacitively resonated, or microwave cavities, etc. The main
assumption is that the physical resonator's zero susceptance and slope
match the equivalent LC resonator’'s at we. It is easy to show that the
slope of parallel LC resonator susceptance, B(w), at wp in terms of
resonator capacitance, C, is [Cuthbert,1983:297]:

= e (3.2.1)

This is the usual starting relationship for microwave filter design, where
resonators take many different forms but have zero susceptance and a
known slope at the band center frequency. There is also a well-known
relationship between resonator reactance slope and stored electric and
magnetic energy [Drozd].

Unfortunately, the slope equivalence in (3.2.1) does not relate to
loaded Q and broad bandwidths, because (3.2.1) is only the second
coefficient in a Taylor series expansion of a broadband susceptance
function. Therefore, resonator slope equivalence does not describe
resonator dissipation, Section 2.3.3, or the stopband performance
described in Section 3.3.1. It is the preoccupation with resonator slope
equivalence in microwave filter literature [Matthaei, 1964] that obscures
the simple basis of direct-coupled filter design advocated in this book.
See Section 5.2.6 for several ways to measure the loaded Q of a single
resonator and Section 3.6.2 for a way to measure all loaded @’s in a tuned
bandpass filter in situ.

3.2.3 Inverters

As noted, an ideal inverter acts like a transmission line with
characteristic impedance Zo ochms and electrical length 6 = 90 degrees,
that do not change with frequency. The pictorial representation is shown
in Figure 3.2.3. Such a two-port network has a chain matrix:

A B 0 Jjz,
[C D]z[on o ] (3.2.2)

where Y¢=1/Zo. Note that determinant AD-BC=1, as required for lossless

L s

. -6 Zy 90 Degre(;S)— Z@
in

Zy

Figure 3.2.3. An ideal inverter and its conventional box symbol.
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two-port subnetworks. The 90-degree port voltage/current relationship is
indicated by (2.6.1) and (3.2.2). Also, the equation for the input
impedance of a two-port network, Zin, terminated by a load impedance,
71, as in (2.6.10) shows that, for an inverter,

2
z, = Z%L. (3.2.3)

The name “inverter” comes from (3.2.3) when Zo=1 ochm. Because the
direct-coupled filter is designed at midband frequency, o, the resonators
in Figure 3.2.1 are open circuits. Theén choices for the inverter Zo's
transform the load resistance to Rs, Rz, and Ri.

It is especially important to know that a series LC resonator can be
replaced by a parallel resonator flanked by ideal inverters as shown in
Figure 3.2.4. This can be verified by using (3.2.2) in the ABCD cascading

- b
2zt | g

2

N
PA

Figure 3.2.4. Ideal equivalence between series and parallel resonators.

method of Section 2.6.2. The indicated Zo=1 in Figure 3.2.4 is not
limiting, because other values simply scale the impedance level according
to (3.2.3). Therefore, the direct-coupled filter prototype network in Figure
3.2.1 is derived by replacing the series resonators in the classical
bandpass prototype network, Figure 2.4.4.

Three inverters of immediate interest are shown in Figure 3.2.5.

_T&E-
T

(b)

Figure 3.2.5. Narrow-band inductive, capacitive, and trap Pi inverters.

These inverters are Pi networks because they are associated with
adjacent parallel resonators which can absorb the negative elements; the
dual case, Figure 2.4.12, employs similar T inverter networks. The
inductive inverter in Figure 3.2.5(a) is 90 degrees at all frequencies, a
surprising fact that can be verified by the ABCD cascading method of
Section 2.6.2. That also shows that the Zo of the inductive inverter is

=2 o, 3.2.4
22 =( 2 @0 1), 620
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which is directly proportional to frequency, @. It is assumed that o~mo in
narrow pass bands. The capacitive inverter in Figure 3.2.5(b) has similar

properties:
Zyc = (-w—°) (Ml ) (3.2.5)
w/\w,C

which has Zo inversely proportional to frequency, ®. In both the L and C
cases, the inverter Zy is equal to the top coupling reactance at wo.

The trap inverter in Figure 3.2.5(c) furnishes one zero of
transmission in the stopband at a null frequency, wn:

»,= %[L—c (3.2.6)

Like the inductive or capacitive inverter, the characteristic impedance of
the trap inverter is just the branch reactance at band center frequency,
wo:

w,

o fef

When @on>wo the coupling branch reactance is inductive, and when @w.«<wo
it is capacitive. In any case, the sign of the reactance is ignored, and the
Zo of the inverter is equal to that many ohms. For narrow-band design,
one or more trap inverters can be used, with their null frequencies placed
for selectivity by a well-known pole-placing technique [Daniels].

The great utility of inverters is confirmed by observing that any Pi
or T reactive network having a center element with reactance of opposite
sign to the other two branches is an inverter at that frequency. That
supports the fact that every lossless two-port network contains an
inverter; e.g., a circuit model of the short-circuit admittance equations
shows a Pi inverter with yi1 and yzz susceptances on either side of an
inverter [Cuthbert,1983,291]. Particularly, the RF transformer in Figure
2.4.10 contains an inductive inverter.

n

—~} 3.2.7)

@Dy

n

3.2.4 Narrowband Choices in Parallel Resistance Space

Parallel resistance value choices at midband frequency wo in
Figure 3.2.1 affect impedance levels but do not affect selectivity. Parallel
resistance values directly determine coupling element reactance values
according to (3.2.3)-(3.2.7). Because resonator loaded Q values are fixed
by selectivity requirements, another important effect of parallel
resistance values is to control resonator reactance values. Furthermore,
parallel resistance values also determine the resonator voltages and
currents for a given amount of power passing through the lossless
network.

There is always a region in parallel resistance space where every
negative inverter element branch can be absorbed to leave a positive final
element of that kind. This consideration is increasingly important with
larger band widths (lower loaded Q’s) and is developed and displayed in
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Section 3.4.5. At this point in the development, inverter reactances have
been assumed frequency independent in the pass band, a narrow-band
assumption which is removed later. Still, it is useful to show how
parallel resistances are involved in positive element values in the present
situation.

_ For internal nodes in Figure 3.2.1, e.g.,, node II, and considering
only L or C inverters, Figure 3.2.5, there are only three cases to consider
for positive shunt element reactances at wo:

Case 1. Both adjacent inverters are inductive/magnetic. The
resonator reciprocal inductance, Li1=1/1, is L-'=Qs/Ra. The coupling
inductors and their shunt negative branches have reactance values
that are the geometric means of their corresponding parallel
resistances, i.e., Zo1z=X12=V(R1R2) and Zozs=Xes=V(R2Rs). The final
shunt reciprocal inductance at node II in Figure 3.2.1, after absorbing
the negative inductances, is

L= [Qz-\/ﬁi/ﬁ? /\/R—J] /R2 . (3.2.8)

Consider when Lg is made to vanish, i.e., when Lg1=0:

o

. Vi V)

Case 2. Both adjacent inverters are capacitive. In a similar way, it
can be shown that

— for L,>20. (3.2.9)

2

2 ~ for C,20. ' (3.2.10)

R, < &
Vi Viw)

Case 3. One adjacent inverter is inductive and the other is capacitive.
Let Rmin:min(Rl,RE}). Then

R, <R,.Q; for C,20 and L,20. » (3.2.11)

Without loss of generality, setting Ra=1 implies that Ri is within an
order of magnitude of unity. Pass bandwidths of less than 20%
{(Qew>b) implies that Q»>5 can be expected. It is concluded that
R2<Qg2? is a constraint that almost always satisfied. In any event,
(3.2.9)-(3.2.10) show that for any given Ra value, there is always a
feasible region in the Ri-R2 parallel resistance space for Lg>0 and
C2>0, because Q2>0.

Case 4. Narrow-band capacitive end coupling. The capacitive end
coupling illustrated in Figure 3.2.2 can be designed by the 1+Q2
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method; see Example 3.3.2 in Section 3.3.2. It is easy to derive the
constraint: ’

R, <R {1+ Q%) for C,>0. (3.2.12)

3.3 Response Characteristics

Inverters and end couplings have an important effect on both
passband and stopband selectivity of direct-coupled metworks. This
section shows how to account for those effects using simple relationships
using inverter properties and the resonator loaded Q’s.

3.3.1 Stopband Selectivity

It has long been known that attention to terms in selectivity
functions involving frequencies far from the passband leads to useful
asymptotic relationships. For direct-coupled LC filters, that approach
accurately estimates the stopband loss, L, when it is greater than about
20 dB:

N
~ ~6+20 Log, [ [ ©, + N20 Log,,|F| + (NMI — NCI)20 Log,o(ﬂ) dB, (3.3.1)
1 (1]

0

where F= (_a)_ - &) (3.3.2)

0, @
The frequencies in the ratios could be in any units, e.g. MHz, because the
units cancel. The (-6) term in (3.3.1) is included for doubly-terminated
filters and omitted for singly-terminated filters. NCI is the number of
capacitive inverters, and NMI is the number of magnetic or inductive
inverters.

Figure 3.3.1 shows the Bode semilog graph of the stopband
selectivity relationship. The break point is shown for a singly-terminated
filter, and it clearly shows the selectivity effect of large values of loaded Q
product. Classical bandpass filters (no inverters, as in Figure 2.4.4) have
stopband asymptotes that slope at 6N dB per octave, where N is the
number of resonators. Direct-coupled filter asymptotes have a slope bias
of 6 dB per octave for each excess inverter type (L or O); e.g., in Figure
3.3.1, (NMI-NCI)=2, so the upper stopband asymptote gains 12 dB per
octave and the lower stopband asymptote loses a like amount. Figure
3.3.1 also indicates that passband distortion exists, even when NMI=NCI
in ordinary direct-coupled filters. Section 3.4 shows how to eliminate
that distortion.

Stopband selectivity estimate (3.3.1) also can provide useful
estimates for direct-coupled filters with one or more traps. Figure 3.3.2
shows the selectivity effect of one trap inverter tuned to a null frequency
in the upper stopband with one other inductive inverter separating N=3
resonators. Well above the null frequency, the trap acts like a
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capacitance, so the asymptote there appears to have a slope that is the
nominal 6N-0=18 dB per octave, i.e., (NMI-NCI)=0.

L {dB})
100 P
//’
GN,/’
,/
-~ dB/octave
, .
N
20log T Q¢
k=1
Ll ll I
0.3 05 1 Y 2 4

tf,

Figure 3.3.1. Stopband selectivity from direct-coupled filters.
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| Figure 3.3.2. Stopband selectivity of a direct-coupled filter with a single trap.
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Similarly, in the lower stopband, the trap acts like an inductor,
and the apparent (NMI-NCI)=2 causes the asymptote to have a slope of
only 6N-12=6 dB per octave. The main fact is that the pivot point on the
ordinate has moved up for the upper stopband, providing increased
selectivity without an increase in loaded Q product. That is the
advantage of trap inverters, even though a price is paid elsewhere in the
stopbands. The amount of apparent increase in loaded Q product has
been quantified [Cuthbert,1983:293]. See Section 4.2.4 for a more
accurate estimate of arbitrary stopband selectivity due to transmission

Zeros.

End coupling affects stopband selectivity in much the same way an
inverter does, i.e. 6 dB per octave for end coupling that changes the
resistance ratio by as much as 10:1 or Q=3 in (2.3.4) and less than 6 dB
per octave for less resistance transformation. See {Cuthbert,1983:463] for
details.

3.3.2 Passband Width

Passband width can be fixed and the stopband performance is
dependent, or vice versa. Given lowpass prototype element values, g;, the
loaded Q’s are obtained directly by specifying the bandwidth, viz, Qaw,
according to (2.4.4). When stopband performance is specified, the loaded
Q product, ITQi, in (3.3.1) and its major role illustrated in Figure 3.3.1
also determine the dependent passband width. It is easily shown that

QBW - Hg, s

where N is the number of resonators.

(3.3.3)

Example 38.3.1. From [Cuthbert,1983:286-9]. A three-resonator
Butterworth filter is to be driven by a 50-ohm source and terminated in a
100-chm load. The midband frequency is 50 MHz, and 60-dB attenuation
1s required at 90 MHz. Use inductive inverters to minimize the loaded Q
values. Inductance values are to be in the range 20-300 nH. Problem:
Find the network element values in ochms at 50 MHz and in pF and nH.
Analyze the result with and without dissipation in the inductors (Q.’s of
100 and oo, respectively) to show passband and stopband effects.
Solution: First, use program DENORM to determine that 20-300 nH
corresponds to 6.28-94.25 chms reactance at 50 MHz. Stopband
attenuation estimate (3.3.1) provides the loaded Q product (IIQu) because
the other terms are known: N=3, NMI=2, NCI=0, and o/0¢=90/50=1.80.
By (3.3.2) |F|=1.2444. Thus, (3.3.1) yields ITQ1=319.5424 for 60 dB at
90 MHz. The g for a maximally-flat 3-dB passband are 1, 2, 1
[Matthaei:98]. That g product and the loaded Q product, according to
(3.3.3), result in Qsw=5.4264 and an ideal 3-dB bandwidth of 18.43%.
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Figure 3.3.3. A three-resonator direct-coupled filter for Example 3.3.1.

Figure 3.3.3 (a) shows the prototype direct-coupled filter with the
inverters and resonators. Each resonator loaded Q is gixQsw from (2.4.4)
with the results shown in Figure 3.3.3(a). Because R; and R3 are given,
R2 may be chosen to obtain inductive reactance values in the given range
and/or to control the voltage at node I1 given the power delivered from
the source. In this case, try R»=75 ohms; then (8.2.3) requires
X112=61.2372 and Xp23=86.6025 ohms. The associated negative
reactances in the inverters are shown in Figure 3.3.3(b) along with the
resonator reactances obtained from (2.3.2); Xp=Rp/Qp. Combining
adjacent inductive reactances having both signs produces the reactances
at 50 MHz associated with the final elements in Figure 3.3.3(c):
X01=9.2141, X11=10.8461, Xp12=61.2372, X12=8.5596, Xc2=6.9106,
X1.25=86.6025, X13=23.4097, and Xcs=18.4283 ohms. These reactances
can be converted to the capacitance and inductance values shown in
Table 3.3.1.

Table 3.3.1. Elements in the Lossless Filter Shown in Figure 3.3.3.
Units: pF and nH.

Cl Ll LJZ ¢ A LL LZl CJ L.'!

345.46 34.52 194.92 460.61 27.25 275.66 172.73 74.52
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A semi-log (Bode) graph of the selectivity of this lossless filter is
shown in Figure 3.3.4. The break point predicted by (3.3.1) is shown at
-6+20L0g(319) = 44 dB. The actual attenuation at 90 MHz, all due to
mismatch loss, is 60.15 dB. Figure 3.3.5 shows selectivity of the same
filter with all inductors having unloaded Q,=100. The midband insertion
loss is nearly 1 dB and the passband center is slightly lower than 50
MHz. The 3-dB bandwidth relative to the midband loss is about 18% as
predicted. Dissipation effects are predicted in Section 3.3.4 and passband
distortion due to imperfect inverters is eliminated in Section 3.4.
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Figure 3.3.4. Selectivity of a lossless  Figure 3.3.5. Selectivity of a lossy filter
filter with inductive couplings. with inductive couplings.

Example 3.3.2. Change the output termination of the filter in Example
3.3.1 from 100 to 50 ohms. Problem: Design a top-C coupling from the
output resonator. Solution: The situation is shown in Figure 3.2.2. The
1+Q? equations in Section 2.3.1 apply to this case. Because Rp=100 and
Rs=50, Q=1 according to (2.3.5). Then Xp=Rp/Qr=100 and Xs=QsRs=50
ohms by (2.3.2). At the band center frequency of 50 MHz, Cp=31.83 pF
and Cs=63.66 pF. The modification to Example 3.3.1 consists of reducing
Cs in Table 3.3.1 to (172.73-31.83)=140.90 pF and adding a 63.66 pF
capacitor in series with a 50-ohm load resistor as shown in Figure 3.2.2.
Analysis shows that the top-C coupling to the load does not change the
passband width but does reduce the attenuation at 90 MHz to about 57
dB, i.e., a 3-dB reduction due to capacitive cancellation of part of the two
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inductive inverters. (The coupling Q=1 is less than Q>3 for full inverter
asymptote behavior of 6-dB/octave as illustrated in Figure 3.3.4.)

3.3.3 Mismatched Terminations

Mismatch loss at midband frequency, wo, in doubly-terminated
filters is due to unequal terminating resistances as discussed in Section
2.2.4 and illustrated in Figure 2.2.2. It is designed to occur in even-order
Chebyshev responses and/or in broadband matching applications, and the
proper source resistance is available from lowpass prototype values as
described in Section 2.5.2. Figure 3.2.1 shows the direct-coupled
bandpass prototype network that is designed at the midband frequency,
wo, where Rs may not be equal to Ry, the input resistance wo.

The desired input resistance at midband, R: in Figure 3.2.1, is
obtained by choosing inverter Zy¢'s using (3.2.3). When normalized to a
1-ohm load, the guiding requirement is that

R
%‘ =gy (3.3.4)

where gn+1 is the normalized source resistance shown in Figures 2.4.1
and 2.4.4. Therefore, the prototype network 1is designed so that
Ri=Rs/gn+1.  Then, after all element values are determined and the
network is connected to a source with Rs, the proper mismatch will exist
at the input (and everywhere else in the network). -

As described in Section 2.1.5, the input resistance in singly-
terminated (lossless-source) filters determines the input voltage relative
to the voltage across the load resistance at midband frequency, wo; see
(2.1.13). Adjustment of any of the inverter Z¢’s will change the input
resistance to any value desired.

Example 3.8.3. Program ALLCHEBY, described in Section 2.5.2, shows
that a Chebyshev N=4 doubly-terminated network response having 0.1
dB ripple requires a source resistance (Rs) of 1.3554 ohms for a 1-ochm
load resistance. See Table 2.5.1. Because this is an even-order
Chebyshev response, there is 0.1 dB loss at the midband frequency, wo.
Suppose that equal terminating resistances are required, i.e, Rg=1; then
the prototype network must contain inverters that produce
R1=1/1.3554=0.7378 ohms. There would be three inverters for N=4; see
Figure 3.2.1. If parallel resistances at the second and third resonators
were arbitrarily chosen to be 2 ohms, then Zo3=V(1x2)=1.4142,
Zo23=V(2x2)=2.0000, and Zo12=V(2x0.7378)=1.2147 ohms.

A different problem would be having a source Rg=5.0. Then, (3.3.4)
would require R1=5.0/1.3554=3.6889 ohms, and that might be obtained
simply by changing Zo12=V(2x3.6889)=2.7162 ohms.
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Example 3.3.4. Suppose that that a Chebyshev N=4 singly-terminated
network response having 0.5 dB ripple is desired with a midband (o=ws)
voltage 3 times the load voltage. By (2.1.13), the input resistance must
be 32=9 times the load resistance at wo. Then, if the loss at the midband
frequency, oo, is defined to be zero dB, there will be 4 peaks of 0.5 dB
GAIN in the passband.

3.3.4 Effects of Dissipation

Dissipative elements in a network affect both the pass band and
the stop band; remarkably, there are offsetting effects in the stopband so
that the overall attenuation is essentially unchanged. The passband
effects are much more severe, as described in Section 2.2.6.

The approximate loss due to dissipation in a resonator is given by
(2.3.8): Ly=4.34Q1/Qu dB. Applying this equation for the three resonators
in Example 3.3.1 and Figure 3.3.3(a), the unloaded Q=100 employed in
Figure 3.3.5 indicates losses per resonator of 0.24, 0.47, and 0.24 dB,
respectively. The sum is 0.95 dB, whereas the midband loss (all
dissipative) by analysis is found to be 0.94 dB. This illustrates the fact
that almost all the dissipative loss is in the resonators, not in the
inverters [Cuthbert,1983:297].

The design of singly-terminated filters is shown to be especially
dependent on the input resistance or conductance in Section 2.1.5 (see
Figure 2.1.8). The direct-coupled bandpass prototype network in Figure
3.2.1 shows that at midband frequency wo each resonator admittance is
reduced by resonance to only dissipative conductance, if any. Then the
input resistance 1s determined only by the load resistance, the inverter
Zo's, and any resonator dissipation conductances. The designer must
adjust at least one inverter Zo, e.g., the inverter between the first and
second resonators, to obtain the desired input resistance when finite
resonator Qu exists. That is easily accomplished by either analyzing the
lossless design with lossy elements, or by the continued-fraction
expansion of the input resistance in terms of the ratios of QUL/Qu
[Cuthbert,1983:296,466].

In the stopband, i.e., more than 20 dB attenuation, dissipative
elements leave the total attenuation (insertion loss) constant by
approximately dividing it between mismatch loss (2.1.11) and efficiency
loss (2.1.12). In Example 3.3.1, the mismatch loss at 90 MHz for a
lossless network was 60.15 dB. By analyzing the network in Figure 3.3.3
with inductors having Q.=100, the attenuation shown in Figure 3.3.5 for
90 MHz is 60.13 dB, composed of 25.77 dB mismatch loss and 34.36 dB
efficiency/dissipative loss. This universal phenomenon has never been
contradicted or precisely explained (perhaps it is due to Boucherot’s
Theorem [Carlin,1998]). It can be relied upon.
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3.3.5 Passband Distortion

There are no physical ideal inverters, i.e., two-port subnetworks
that have constant characteristic impedance and constant 90-degree
electrical length, both independent of frequency. Usually, one or both of
these ideal characteristics vary with frequency. For example, the three
LC inverters in Figure 3.2.5 are all 90 degrees long at all frequencies, but
their Z¢’s vary with frequency. A coaxial transmission line has a constant
Zo but its electrical length is proportional to frequency. Both Zp and
electrical length of a rectangular waveguide vary with frequency. These
non-constant properties affect the ideal selectivity of direct coupled
filters. It is shown in Section 3.3.1 that the effect of L.C inverters on the
stopband selectivity is easily predicted.

There are no known ways to predict quantitatively the passband
distortion due to inverters. It is possible to construct approximate
frequency-mapping functions that predict passband edge frequencies for
special cases [Cohn,1957]. The distortion in the maximally-flat filter,
Example 3.3.1 and Figure 3.3.5, is not so obvious. The qualitative nature
of distortion of equal-ripple passband response shapes can be seen in the
following two examples, where narrow passbands are poor and wide
passbands are unusable, respectively. Section 3.4 shows how to
eliminate passband distortion in every situation.

Example 3.3.5. A two-resonator doubly-terminated filter must have a
10% pass band with a 0.9697 dB ripple. Problem: Design and analyze a
normalized network to show the passband distortion. Solution: The
ALLCHEBY.EXE program provides the design information in Table
3.3.2:

Table 3.3.2. A Two-Resonator Doubly-Terminated Filter from
Program ALLCHEBY
Is this a Matching or a Filter (QL=0=Q8S) network (_,F)? F
Is this filter Singly- or Doubly-terminated (S, )? D
N, dB FLAT LOSS, dB RIPPLE, %BW =? 2,0,0.9697,10
THIS INSERTION LOSS FROM 0.0000 TO 0.9697 dB
THIS dB RIPPLE = 0.9697 ’
Lseror Cpar G(1)=1.7994 Q(1)= 17.9936
Cparor Lser G(2)=0.6871 Q(2)= 6.8708
Ohms or Mhos G(3)=2.6188
PASSBAND CENTERED AT 1 R/S HAS EDGES 0.9512 1.0512
20-dB STOPBAND HAS EDGES 0.8514 1.1746.

The normalized direct-coupled filter is shown in Figure 3.3.6. The
equivalence in Figure 3.2.4 is used to convert a series resonator next to
the load into a parallel resonator. (The inverter next to the load is
assumed to be ideal and can be removed.) Therefore, as described in
Section 2.4.2, the left-hand column is selected from Table 3.3.2, 1.e., Lser,
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Figure 3.3.6. A normalized N=2 Chebyshev filter with an inductive inverter.

Cpar, and chms. From that, it is seen that gn+1= 2.62 ochms, and Rs and
Ri1 must be related by (3.3.4). An arbitrary choice is to make the filter
midband input resistance R;=1.0 ohms, so that the proper mismatch
exists at band center frequency of 1 rad/s when Rs=2.62 ohms. That
explains the choice of inverter Zo=1, according to (3.2.3). The loaded Q
values in Table 3.3.2 are obtained in the resonators according to (2.3.2),
1.e., Xp=Rp/Qp. as shown in Figure 3.3.6.

The calculated passband response of the filter in Figure 3.3.6 is
shown in Figure 3.3.7, where the passband distortion due to the inverter
Zo's linear dependence on frequency is evident, even in a narrow (10%)

14 1
1.2

1 4

0.8 -

821 (db)

0.6 1

0.4 -

0.94 0.96 0.98 1 1.02 1.04 1.06
Frequency (Rad/sec)
Figure 3.3.7. The distorted passhand of an N=2 inductively-coupled filter.

band filter. The ideal passband extends from 0.95125 to 1.05125 rad/s
according to (2.2.3), and those are the ends of the curve in Figure 3.3.7.
At the two frequencies in Table 3.3.2 where the attenuation should be 20
dB, the inverter imperfection results in 18.40 and 21.61 dB for the lower
and upper frequencies, respectively.
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Example 3.3.6. Consider a three-resonator filter having 0.5 dB ripple in
a 70% passband. Use two inductive inverters, as in Figure 3.3.3(b), and
additional capacitive end couplings, as described in Example 3.3.2 and
Figure 3.2.2. Problem: Design a normalized filter, and eliminate shunt
capacitors at the ends and the shunt inductor in the middle. Solution:
See Figure 3.3.8. Program ALLCHEBY shows that the loaded Q’s are

[ 1 N
0.440 |\ C, L,Va8s

-+ Ry L« 6.18 C, N 0412

o

Figure 3.3.8. A filter with inductive inverters and capacitive end couplings.

Q:1=Q3=2.28, and Q2=1.57. The parallel resistances determine all element
values. To eliminate the shunt capacitors in resonators 1 and 3, (3.2.11)
shows that Ri=R3=1+42.282=6.20 chms. To eliminate the inductor in the
middle resonator, (3.2.9) shows that Rs=3.82 ochms. Thus, (2.3.2) shows
that 1/Xu=Q«/R2=0.412=C, farads. Both inverter inductances are
V(6.20x3.82)=4.87 ohms. Also, (2.3.2) assigns the resonator reactances
Xi=Xm=6.20/2.28=2.72 ohms. Combining each of those with the negative
of the inverter reactances yields the shunt inductances in Figure 3.3.8:
6.18 henrys. .

Figure 3.3.9 shows the terribly distorted response of this filter,
which was designed using the narrow-band assumption that the inverters
and end couplings are frequency independent (x markers). The

G L

o

P9

INSERTION LOSS (dB)
[
g+
2= S

- n
: 3¢
96—

0' T ”"' i . AdBA. T i
04. 0.6 0.8 1 1.2 1.4 1.6

FREQUENCY (RADIANS/SECOND)
Figure 3.3.9. Passband of a 70% 0.5 dB filter with and without compensation.
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undistorted response is shown by the 0 markers. The next section shows
what small changes in design procedure and element values produce the
undistorted response.

3.4 Eliminating Passband Distortion

The way the inverter distortion can be corrected is shown in the
next two sections, which deal with two- and three-resonator filters
[Cuthbert,1996]. The solution is simply to stagger tune the resonators
and end coupling by an amount that is trivial to calculate. Section 3.4.3
describes the procedure for replacing any series resonator by its exact
shunt equivalent, similar to the narrow-band equivalent shown in Figure
3.2.4. That procedure is less confusing than designing by stagger tuning
more than two or three resonators. Details of the Norton transformations
are omitted, because the new results eliminate that complexity entirely.

3.4.1 Stagger-Tuning Two Resonators

Consider only resonators 1 and 2 in the bandpass prototype
network shown in Figure 2.4.4. It is seen that there can be two adjacent
capacitors (swap positions with the respective branch inductors) having
values Q2 and 1/Q:. Then insert an ideal transformer between capacitor
1/Q: and inductor Q; and rescale the impedance of @: and go according to
the turns ratio. The Norton transformation shown in Figure 2.4.11
enables replacement of the ideal transformer and the two capacitors by a
Pi of capacitors that preserves the exact frequency response. The
resulting topology is shown in Figure 3.4.1(c).

Figure 3.4.1(b) and (a) show the decomposition of the topology in
{c) so that the capacitive Pi inverter (Figure 3.2.5) can be identified.
Three surprising features are revealed:

1. Resonator inductor Lg in Figure 3.4.1(a) is repositioned

in series as in (b), and Rg=Qg2R: defines the inverter
impedance shown,

2. There is a trim capacitor, Ci, in Figure 3.4.1(b) that
stagger tunes the input resonator below its resonant
frequency, wo, and

3. There is one inductive and one capacitive coupling with
voltage transfer phases of less than 90° with opposing
signs.

Repositioning Lg without changing its value has left the output resonator
net capacitive and with a parallel resistance greater than Rg by exactly
Rt according to 1+Qg2. The inverter action according to (3.2.3) delivers a
net inductive impedance to the input resonator. But that is exactly offset
by Ct. The value of C: is determined by considering that it has a loaded Q
of 1/QE, 1.e. C:=1/(QzRp).
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Figure 3.4.1. Undistorted prototype for N=2 with inductive end coupling.

Figure 3.4.2 shows an alternative replacement for resonators 1 and
2 in Figure 2.4.4. In this case, there is an inductive inverter and a
capacitive top coupling analogous to the reverse situation in Figure 3.4.1.
The relationships are also analogous. Repositioning Cg without changing
its value has left the output resonator net inductive and with a parallel
resistance greater than Rg by exactly R¢ according to 1+Qg2. The inverter
action according to (3.2.3) delivers a net capacitive impedance to the
input resonator. But that is exactly offset by Li. The value of L is
determined by considering that it has a loaded Q of 1/Qg, i.e. Li=RpxQE.
The two topologies in Figures 3.4.1 and 3.4.2 modify series
resonators at the ends of ladder networks by replacing one of the series
elements (L. or C) with a Pi subnetwork of like kind. They are
remarkably similar in topology to the narrow-band end coupling designed
by 1+Q2? as illustrated in Examples 3.3.2 and 3.3.6, but in the present
stagger-tuned situation, there is no passband or stopband distortion.
Note that as Qg increases, the node-voltage phases approach +90° and the
| trim elements tend to vanish, consistent with very narrow passband
widths.

L
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==

Figure 3.4.2. Undistorted prototype for N=2 with capacitive end coupling.

3.4.2 Stagger-Tuning Three Resonators

Consider only resonators 2, 3, and 4 in the bandpass prototype
network in Figure 2.4.4. After insertion of ideal transformers, there are
two adjacent capacitors and two adjacent inductors that can be replaced
by their respective Pi networks according to the Norton transformation
illustrated in Figure 2.4.11. The result in Figure 2.4.4 is a shunt L.C pair
from node 3 to ground, i.e., resonators 2, 3, and 4 have the appearance of
three shunt resonators with one L and one C top coupling.

The direct-coupled N=3 topology obtained by two Norton
transformations is partitioned into resonators, inverters, and two
remaining elements as shown in Figure 3.4.3. There is one inductive
inverter and one capacitive inverter and one trim element of like kind on
their respective outboard sides, i.e. Lt and Ci. Qualitatively, resonator C
is stagger tuned to a somewhat lower resonant frequency than we by C;,
i.e. more capacitive. Impedance Z shown in Figure 3.4.3 is somewhat
inductive because of the Zg inverter. Because resonator B is anti-
resonant at oo, inverter Zosp presents a somewhat capacitive impedance
to resonator A, but trim inductor L. stagger tunes that capacitance out.
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Figure 3.4.3. Undistorted prototype for N=3.

The effect of the stagger tuning is that there is no distortion of the ideal
response at any frequency.

Figure 3.4.3 shows that the two trim elements are easily
calculated: Ci=1/(QeRc) and Li=QgRa. As in the two-resonator case, the
node-voltage phases are less than 90° with opposing signs. Note that as
Qs increases, these phases approach +90° and the trim elements tend to
vanish, consistent with very narrow passband widths. Figure 3.4.3. could
be turned end for end, of course.

3.4.3 Exact Replacement of Resonators

The stagger tuning concepts explained in the preceding two
sections and [Cuthbert,1996] show how Norton transformations are
applied to explicitly identify inverters and the adjustments necessary to
eliminate passband distortion. Applying those stagger tuning results to
more than three resonators would be confusing, so that the original
concept of replacements for series (or parallel) resonators similar to
Figure 3.2.4 is adopted. For example, compare resonators 2, 3, and 4 in
Figure 2.4.4 to Figure 3.4.3; clearly all those elements between and
including L: and C¢ compose an exact replacement for internal series
resonator 3. ([nternal resonators are those not on either end of the
bandpass prototype network.) These new and useful results are
summarized for easy application to design any direct-coupled filter that is
free of distortion for any band width. Specific examples are provided in
Sections 3.4.5 and 3.5.

3.4.3.1 Replacing External Series Resonators

Resonators 1 and 2 in Figure 2.4.4 are replaced by the equivalent
networks with corresponding resonators E and D in Figure 3.4.1, and
now all the network except resonator D is condensed into the subnetwork
in Figure 3.4.4. The design starts with an external lowpass series
inductor, gi, connected to an end resistance go or gn+1 (Figure 2.4.1), and
that is converted to a series LC resonator scaled to gixQsw. Leaving the
series inductor connected to the load resistance, the series C is replaced
by a Pi subnetwork composed of Cx, Ca, and Ce in Figure 3.4.4, which
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includes their equations in terms of Qg and parallel resistances. Cx is
combined with the shunt resonator which also shares node D.

Figure 3.4.5 shows the analogous external resonator case, where
the external series resonator L is replaced by the Pi subnetwork
composed of Lx, Lqe, and Le; their equations in terms of Qg and parallel
resistances are included. Lx is combined with the shunt resonator which
also shares node D. In both the external resonator equivalences, there is
one L and one C top coupling. Equations for shunt inverse inductances
are employed to facilitate their vanishing, i.e., approaching zero, as well
as for combining them with adjacent parallel inductors.

of O,

= (I/QE-'\/Rd/Re)/Rd Cde_l/ RR,;, L_ = 1/ Qg ~ w/ Ri/R, )/Rd’ Lie = RJR, ,

C.= Qe ~RJRD[R.. Le=0g Ry, L' = (Qr — JRJR)R.. Cz=V(QsRy),
R,=0; R, R,=0; R,.
Figure 3:4.4. An exact replacement for  Figure 3.4.5. An exact replacement for
the Cin an end series resonator. the L in an end series resonator.

3.4.3.2 Replacing Internal Series Resonators

Resonators 2, 3, and 4 in Figure 2.4.4 are replaced by the
equivalent networks with corresponding resonators A, B, and C in Figure
3.4.3, and now all the network between resonator A and resonator C is
condensed into the subnetwork in Figure 3.4.6. This is an exact

B Nty B

SERETAES

Gy C T

Lb
L;’ = (I/QB_'\/Ra/Rb)/Ra’ Lab=-\/Ra Ry,
= (Qp - Rp/R)[Rb> Cb= (Qp— JRo/R)[Rs,
bc=1/'\/RbRc’ Cy= (I/QB_VRC/Rb)/Rc’ ¢ =tan_lQB

Figure 3.4.6. An exact replacement for an internal series resonator.
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replacement for a series resonator, as opposed to the approximate
(narrow band) replacement shown in Figure 3.2.4, and one L and one C
top coupling are mandatory.

The inverters are included in Figure 3.4.6 (see La and Cp), and
the end elements Ly and Cy are combined with their respective shunt
resonators, which share their respective nodes. Equations for shunt
inverse inductances are employed to facilitate their vanishing, ie.,
approaching zero, as well as for combining them with adjacent parallel
inductors. The equations show that middle elements Ly and Cp in Figure
3.4.6 are not resonant at wo=1 unless R.=R..

3.4.3.3 Replacing Internal Series Resonators Having Traps

Figure 3.4.7 shows a lowpass to bandpass to series elliptic branch
and its exact bandpass equivalent subnetwork. The lowpass prototype

ot s o
LLP

Lowpass Equivalent Bandpass Equivalent Bandpass

A el C

=
YWWAS
S
+
r%‘
tf%
e
|

QBa Rb

Figure 3.4.7. An exact replacement for a series elliptic branch.

inductor Lip is elsewhere labeled gi, and Crp=0 is the case for all-pole
filters having a monotonic stopband selectivity. When 0<(LppxCrp)<1 in
any lowpass prototype branch, a stopband zero of transmission occurs at
their resonant (null) frequency. When that lowpass response is
transformed to the conventional bandpass response by (2.4.3), the
passband edge frequencies, 1 and w2, are still computed by (2.2.3) and
have the geometric symmetry of (2.2.1), i.e. w1xws=1. The lowpass null
frequency corresponds to two bandpass null frequencies that also have
geometric symmetry about wo=1. These null frequencies are produced by
the two bandpass equivalent branches and the top-coupled equivalent
subnetwork shown in Figure 3.4.7. Restating (2.5.2), the bandpass null
frequencies are w_<wo1 and o+>wm2:

5=1(20, VL., C,p ), » (3.4.1)
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Note that as Cip—0, ©_—0.

The two inverter top-coupling branches, (Cap,Lab) and (Cpe,Lie), in
Figure 3.4.7 produce the two zeros of transmission at the frequencies
given by (3.4.1). At midband frequency wo=1, branch (Cyp,Lab,®+) appears
to be inductive, and branch (Cyc,Lbc,®_) appears to be capacitive, with
reactance values given by (3.2.7). Subnetwork elements Cr and Lzt are
combined with resonator A elements of like kind, and subnetwork
elements Cv and Ly also are combined with resonator C elements of like
kind. This subnetwork could be turned end-for-end, of course.

Table 3.4.1 summarizes the design equations for elements in
Figure 3.4.7; do not overlook the two squared terms in the denominators.
These equations were derived by applying a well-known transformation
[Geffe,1963). For wide-band design, one or more pairs of trap inverters
can be used, with their null frequencies placed for selectivity determined
by a well-known pole-placing technique [Daniels]. Tables of element
values and null frequencies for prototype elliptic filters are available
[Zverev], and computer programs also have been provided [Amstutz],
[Cuthbert, 1983:358-362].

Table 3.4.1. Element Equations Producing Nulls in Figure 3.4.7.

Qs =L Qsw, L}l = {_I.,(_]ﬂ_ (llina/)f’i :'/ea » Cr = w? L‘rl’ Ly = ("a’_z)\/RaRb ’

Qs (l—ﬂl,z)2
C, = (uf/L,,,,, L;l =|:QB _ ﬂb/Ra(:_z_z)\[Rb/Rc }/eb ,C, = ,:QB -~ VRb/Rc(l"'_[;—zz)'Rb/Ra ]/Rny

o 0 e 1= )., [ ST v,

The Geffe transformation has also been applied to derive a
topology similar to the lower half of Figure 3.4.7 [Sabin]. However, that
technigue differs from this direct-coupled filter design method, where
retention of a resonator between trap coupling is desired. The Sabin
approach designs odd orders of elliptic bandpass filters with emphasis on
absorbing the stray capacitance to ground between the traps.

3.4.4 All Possible All-Pole Topologies

Figure 3.4.8 duplicates Figure 2.4.7 to emphasize the possible
combinations of top-coupling elements indicated by the “*” symbols. It is
now clear from Figures 3.4.4 through 3.4.7 that the inductive and
capacitive pairs of couplings can be employed in several combinations.
These are shown in Table 3.4.2 (end-for-end not counted). For example,
Figure 3.4.8 corresponds to the single N=4 line in Table 3.4.2; it is
composed of resonator A followed by Figure 3.4.6, followed by resonator C
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(the same as resonator D), followed by either Figure 3.4.4 or Figure 3.4.5.

N

B Cc=D
A A A~ A -
) R @y, WMo ®q 0 R
QACRa Qg ['Rb QC:ng' Ry QE['Re

Figure 3.4.8. Direct-coupled network topology with only parallel resonators.

Table 3.4.2. Statistics for All Possible Direct-Coupled Filters.

N

= Number of Resonators
NE =

Number of Elements

NK = Number of Top Couplings (*)
KK = Number of Top Coupling Pair Combinations (L.C, CL, LC, ¢tc.)

Min | Max | Surplus

N TOPOLOGIES NK | KK | NE | NE NE
2 | DMEN 2 2 4 5 1
3 [ A"BC 2 2 6 8 2

~E D =D, E;* 4 4 6 8 2
4 | A"B"C=D"E" 4 4 8 11 3
5 AlABlACF"AzABz'\Cz 4 4 10 14 4

~E "D i=ABC=D,"E* 6 8 10 14 4
6 | A\B"C=A B C=D"EA 6 8 12 17 5
7 1 ABiCi=AB N G=ABYYG 6 8 14 20 6

AElADr’:AlAB 1AC1:A2AB2ACZ=D2AE2A 8 1 6 14 20 6

A particular N=4 case is shown in Figure 3.4.9. The minimum number of
elements listed in Table 3.4.2 corresponds to a canonic form.
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QibRy QsheR;

QLR
Figure 3.4.9. An N=4 direct-coupled network that can be distortion free.

3.4.5 Wideband Choices in Parallel Resistance Space

series

o bR

Wider passbands are possible when there i1s no passband
distortion. That makes it more likely that negative elements may occur
unless the parallel resistances have been chosen properly.
describes the feasible regions for positive elements that always exist in
parallel resistance space for the external and internal replacements for

resonators.

This section
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Table 3.4.2 shows that the two-resonator case occurs when
resonator D is connected to the series-resonator equivalent subnetworks
shown In either Figure 3.4.4 or Figure 3.4.5. That results in the
networks shown in Figures 3.4.1 and 3.4.2, respectively, and the
equations for their element values are shown in Table 3.4.3 for the
normalization Re=1 ohm. The choices in the boxes in Table 3.4.3 show
that, for Re=1, positive element values occur when Rq 1s within a range on
a line, and some elements vanish when R4 is at the extremes of its range.

Table 3.4.3. Element Equations for the Undistorted N=2 Cases.

Figures 3.4.1 & 344 Figures 3.4.2 & 3.4.5
¢ =00 - (VR - 1)/2e)/Ra . Ly =R (00 - (VRS - )/es]"
Co=(1-1/VRS)/e: . Lo=0s(1- /R,)™",
Dde:l/(QEm)) Lye=0z JRs .
Ly=Rp/Qp. & Ci=Q4fRa, &
Lg=Qf . Thus, C.=1/Qc . Thus,

[ (v 06 00) 28,21 | (1+050:) 2 Rs21

Table 3.4.2 shows that a three-resonator case occurs when
resonators A and C are connected at the ends of the series-resonator
equivalent subnetwork shown in Figure 3.4.6. When all paralleled
elements of like kind are combined, the resulting network is shown in
Figure 3.4.10. The corresponding equations for the element values are
shown in Table 3.4.4.

A B
C\G\ Cod\ .
C, L, L, c, C. L.
—— PR SE— —_—
R = p— R¢

Figure 3.4.10. An N=3 network with an L and a C internal couplings.
Table 3.4.4. Element Equations for the First N=3 Case
L=R(Q+ Qs ~RJB, ),
L, =R, (QB ‘m—l >
G =(Q13 _m/Rb >
C. =[Qc +I/QB —m& s
Ly = ﬁ s
G = YRR,

Ca:QA/Ra ’ &
chRc/QC -




Figure 3.4.11 shows the feasible region in parallel resistance space
where all the elements in Figure 3.4.10 are positive. The four boundary

10 -
R R =1 ;Pos\.litl|ve sEIemen
b = : alue:
¢ R, Vertex R, Coordinate R, Coordinate Eliminate
1 1 Oh Goly
L, )
R 2 (1+94 QB) 0; Col,
-3
. - 3 (_QiQL‘) (0c + Q,_,;‘)'2 Col,
Boundary where (Qc + Qg )
this 2
element vanishes 4 (1+ Qs QC)_2 (Qc + Q5 l) Cols
0.1 -+ et t—t—+++
0.1 1 R, 10

Figure 3.4.11. Feasible regions in parallel-resistance space for N=3.

lines represent loci where the indicated elements vanish. The table in
Figure 3.4.11 shows the pairs of elements that vanish at each vertex and
the vertex coordinates. Note that the relationships in Table 3.4.4 and in
Figure 3.4.11 involve only parallel resistances that are related by the
strictly-positive resonator loaded Q values. That guarantees that the
feasible region cannot be empty. Logarithmic scaling of parallel
resistances 1s advantageous for both graphing and computation.

Example 3.4.1. Design a three-resonator filter having the topology in
Figure 3.3.8 but with exact 0.5 dB ripple over a 70% pass band width.
(Example 3.3.6 designs the same filter based on the constant-reactance
inverters and 1+Q2 end coupling.) Problem: Replace both external series
resonators with an exact equivalent shunt resonator, and force the net
shunt inductance in the middle of the filter to vanish. Solution: Start by
considering N=3 in the lowpass prototype network of Figure 2.4.1(b).
Program ALLCHEBY shows that the loaded Q's are Q1=Q3=2.28, and
Q2=1.57 in the bandpass topology in Figure 2.4.4. Replace the two series
resonators with the exact equivalent subnetworks in Figure 3.4.5.
Resonator 2 has a shunt inductance equal to Ly=Ra/Q2, where Q2=Qp and
Rs=R4, and is flanked by two equal shunt inductors, Lx in Figure 3.4.5.
Combining these three shunt inductances algebraically, the equation for
the net inverse inductance is found to be

00,0, +(Q| + QJ)— \/—R:(g%ﬂ + O Rﬂ)
R,Q.0, '

Figure 3.4.12 shows the feasible region for positive In=L3 and Lg as
functions of Rg versus Rn, Rp=1 assumed. The feasible region is a three-

L;l = (3.4.2)
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Figure 3.4.12. Feasible region for positive L1=L3 in Example 3.4.1.
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Figure 3.4.13. Final N=3 filter in Example 3.4.1.

sided region bounded by a 45° line, Ru>0, and the monotone-increasing
concave arc define by (3.4.2). See Figure 3.4.13; Lo would appear in
parallel with Cs, and for Lz to vanish, Lo!—0 in (8.4.2). That can occur
for a wide range of input resistance Rg values; in this case R1=1 with the
resulting value of parallel resistance Rz at node 2 as shown in Figure
3.4.13. Therefore, R2=7.783, which also determines the values of the
other elements as shown in Figure 3.4.13. The response of this network
is that shown in Figure 3.3.9, the curve with the O markers. The
ridiculous response shown by the x markers is that in Example 3.3.6,
which corresponds to the element values in Figure 3.3.8. That has
exactly the same topology, and element values that are similar. Clearly,
both narrow and wide-band equal-ripple designs should utilize the exact
equivalent subnetworks in Figures 3.4.4-3.4.7.

3.5 The Method of Choices

Spreadsheets are advocated for design of all the various topologies
of both narrow- and wide-band direct-coupled networks. Like most
programming situations, it is only necessary to check the correctness of
one or two solutions manually; then many other solutions can be
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examined for numerous choices of parameters, i.e., “what if’. The defined
parallel resistance space is an excellent basis for parameter variation in
addition to varying passband width, flat loss, ripple, or selectivity
parameters. Several PC spreadsheets include convenient “point-and-
click” optimization features that greatly simplify minimization of element
max/min ratios, forcing some elements to standard values, making
groups of elements have the same value, etc. The wideband techniques
described in Section 3.4 allow a designer to examine all possibilities while
implicitly maintaining the exact response characteristics of the network.
Many of these advantages are illustrated in the following sections.

3.5.1 A Spreadsheet for Four Resonators

Table 3.4.2 shows that for four resonators there are KK=4 top
coupling combinations of L.C pairs. Choose the LCLC combination from
source to load as shown in Figure 3.4.9, and compare that to Figure 3.4.8.
That shows that resonators 4, 3, and 2 in Figure 3.4.9 correspond to
nodes A, B, and Cin Figure 3.4.8, and nodes A and C are connected by
the equivalent subnetwork in Figure 3.4.6. Similarly, resonators 2 and 1
correspond to resonators D and E, and those are connected by the
equivalent subnetwork in Figure 3.4.5.

Each Kth resonator’s reactance is related to its Q and parallel
resistance by (2.3.2): Xk=Rx/Qx. Those reactances can be combined with
their adjacent parallel components of like kind in the subnetworks either
numerically or by equation. For example, consider the situation at node
2 in Figure 3.4.9 and detailed in Figure 3.5.1. In addition to Cp and Lp

000

S}
O~ ecoo

T
|CY Co Lp X

Figure 3.5.1. Design details at node 2 in Figure 3.4.9.

-3

[-X-2-]

in resonator D, there is Cy from Figure 3:4.6 and Lx from Figure 3.4.5.
The optional equations for each element’s net value are shown in Table
3.5.1. ‘

Table 3.5.1. Optional Equations and Constraints in Figure 3.4.9.

Cy = 1f(@y Ro)s Li'= (1~ JIGJR)(Q1 Ro) = Ly 2 04f Ry 2 Ry, Ly = @1 fR5 7RG,
L3' = (o QZ*“!{WT)/(QI Ry)=> Ly 2 0if Ry < Rg (1+ Q4 Qz)Z, C32=‘/W:
Cz=(Q2+”Q3‘m7ﬁ3=)/Rz:>szoifRJZRz(Qz+1/Q3)_2, Lyy = fRy K5,
Cs:(QJ*-ﬁWTz)/RJ:’CJZOifRaﬁRzQJZ, Cs = Qu/fRy,
L;‘=(Q3-.,[T3=777=)/R3:>L3201fR,sR4Q32,
L;':(Q,H/Q,-mﬁ‘;")/m::,L4zoifR3zR4(Q4+1/Q3)‘2.
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By observing Figure 3.4.9 and Table 3.5.1, it is noted that some
elements cannot vanish (e.g., Ci, Lai, etc.) and others can (e.g., L1, Cs,
etc.), depending on choices of parallel resistances. Constraints on the
parallel resistances to keep elements positive are also shown in Table
3.5.1; they are derived from the equations for the respective elements.
Again, it is emphasized that writing element and constraint equations
such as those in Table 3.5.1 is optional, because the net values of the
elements can be summed numerically from their several constituent
parts. Similarly, the constraints can be enforced by equations and/or
numerically by the optimization features included in spreadsheet
programs.

It is instructive to utilize the optional element constraint equations
in Table 3.5.1 to plot the feasible region shown in Figure 3.5.2. There can

100

4, -
— 3
~ LA
Ry |2
/ i s I,
Ty E— Feasible Region P
—— (All Positive Elements)
o
Ly " | vanishing
=7 Element on []
/ Boundary
1{%%?%%&& G
1 4 —————"10 > 100
R,

Figure 3.5.2. A feasible region for positive elements in Figure 3.4.9.

only be three parallel resistances involved in this case (Ri=Q:2Ry,
according to Figure 3.4.5). By normalizing Ro=1, the other two parallel
resistances can be visualized without loss of generality. It is usually best
to utilize logarithmic scales for the two remaining parallel resistances, in
this case Rs versus Ry in Figure 3.5.2, which is similar to Figure 3.4.11.
Again, 1t is clear that the feasible region always exists, and that one or
two elements may be made to vanish if desired.

Also note that the maximum possible value of R4/Ro is available as
the product of the upper bounds on Rz, R3, and R4 given in Table 3.5.1 in
terms of any set of loaded Q values. Therefore, one reason to go to the
trouble of writing the constraint equations is to relate the bandwidth of
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any response shape to the maximum possible transformation ratio while
maintaining positive values for elements.

Figure 3.5.3 shows an EXCEL® version 5.0 spreadsheet that
incorporates the equations in Table 3.5.1. Lines 3-10 contain filter

A B C D | E | ¢ G H | J
1 {File ---.XLS Example Using AABAC=D?EA with LCLC Couplings
2 INPUT
3 “:3:68897>JOmega 0 JOmega 1 J[Omega 2
4 2.0000] 1§~ 0.7808] 1.2808 AGE
5 78.0776] f2 MHz =] 128.077 6.28E+08)
3 3 4 5 NODES JV-V DEG
7 03 20: 8180070173554 4-3 -74.2§|
8 3.5406 1,6360] 3-2 74.23
) 30w R4 (FIXED 2-1 -65.73
10 Al 5a008] 36889 10 65.73
11 JVARIABLES] R0=50) FOR POSITIVE VALUES:
42 INone Ci= 0.4509) 14.35]pF
13|R2, R3 C2 = 0.4451 14.17] R3 GE 0.5328)
14JR2, R3 Cc32= 0.2035] 6.48]
15|R2 R3 C3= 0.4509) 14.35] R3 LE 55.9400)
16 JNone C4 = 0.4435) 14.12) SOLVER:
17R? L1= 42111 335.11]nH R2 GE 1.0000} —
18 [R2 L21= 4.6 45| 72.78 —
19 JR2 L2 = 2.1143] 68.25} R2 LE 46.14231, -Hi+
20 R3 L3 = 2.3223 84.8¢] R3 LE 46.2435]] -H H
21 R3 L43 = 4.4673] 355.50) 1% -
22 R3 L4 = 3.3760) :ea.esl R3 GE 1.0023] £ - = =
23 MAX/MIN C's = 2.2156, 2 3 =
24 MAX/MIN L's = 2 "
25 WORST RATIO = 122156 Jequency (MHzmge )

Optimized

Figure 3.5.3. A spreadsheet for four-resonator all-pole filters.

specifications and calculated quantities that are not peculiar to the
several LC coupling combinations. Lines 12-22 relate to the respective
elements: column B lists the element names (Figure 3.4.9), column A
shows which parallel resistances are independent variables for the
respective elements, columns C and D show the normalized and
unnormalized element values, and columns F and G show the constraints
on parallel resistances for the elements to be positive. Columns I and J
show the relative phases of the node voltages at the band center
frequency. The values for Rz and Rs are arbitrary.

Example 3.5.1. Design an all-pole fourth-degree bandpass transformer
to match a 50-ohm load to a 250-ohm source with a mismatch of no more
than 0.1 dB over a 50% bandwidth centered at 100 MHz. Problem: This
is essentially a filter, but the use of bandpass inverters simplifies the
required impedance transformation. Minimize the spreads of L, and of C
values. Solution: The cross-hatched rectangles in Figure 3.5.3 show
where data must be entered for particular problems that utilize this
topology. Program ALLCHEBY provides the required lowpass prototype
element values, and they are shown in Figure 3.5.3 with the
corresponding resonator loaded @ values. The source resistance,
g5=1.3554, is not unity because of the mismatch at band center frequency;
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see Section 3.3.3. The cells 1n rows 23-25 result from the standard
spreadsheet operation to scan for extreme values in a range of cells and
then to report both the ratios of extremes and the greater ratio.

A powerful alternative to manually experimenting with values of
Rz and R to affect element values is to use the optimization capabilities
included in the spreadsheet. For EXCEL®, the TOOLS menu offers the
SOLVER optimizer, where cell D25 can be designated as the “target” cell
and cells D10 and E10 as the “changing” cells. In OPTIONS, select
automatic scaling, quadratic estimates, central differences, and Newton
search. When started from cell values of Rs=2 and Ra=3, the optimizer
will minimize the worst of both the L’s and C’s ratios to 2.2156 as shown
in Figure 3.5.3. (Solutions are somewhat dependent on starting
resistance values). Both sets of normalized and unnormalized element
values are immediately available. The passband response, including the
planned mismatch at band center, is included in Figure 3.5.3. It does not
change as Rz and Rs are varied.

Example 3.5.2. Singly-terminated filters can be designed using a
spreadsheet designed for a particular topology. Problem: Design a
normalized fourth-degree singly-terminated all-pole filter having a
maximally-flat (Butterworth) shape over a 50% bandwidth centered at
100 MHz. Solution: The table in [Matthaei, 1964:107] provides the
lowpass prototype element values: g:=0.3827, g2=1.0824, g3=1.5772, and
g4=1.5307. The input resistance, R4, can have any value up to the limit
defined by the inequalities in Table 3.5.1. As described in Section 2.1.5,
fet R4/Ro=9 at the passband center frequency, so that (2.1.13) yields
|V4/Vol=3. Therefore, for a 50-chm load, an input resistance of
R4=450/150=9 ohms is entered on the spreadsheet in Figure 3.5.3 for the
topology in Figure 3.4.9.

As a way to utilize the two degrees of freedom, Rz and Rs, the
spreadsheet optimizer can enforce the constraints Li,=La, Lo2=Ls3, and
Ls=Li so that Li=Lz=Ls. The resulting element values and response
shape are shown in Figure 3.5.4. This singly-terminated filter can be

25 i ’—— l
/ Unnormalized(R,=50):
: i _] ¢, = 41.59pF L, =157.59 nH
r—‘ C, = 20.82 L, = 9928
1., | ] Cp,= 891 L, =157.59
g C, = 12.00 L, = 157.59
2 C, = 10.83 L,,=523.06
= ) L, =356.46
\ MAX/MIN C's = 4.6659
o8 — /—— MAXMINLs =52685
\ / WORST RATIO = 5.2685
9 k PN S
i B8 8s 90 95 100 05 10 15 120 125 10

Frequency (MHzy——{> .
Figure 3.5.4. Passband and element values for the filter in Example 3.5.2.
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employed in either of the two orientations shown in Figures 2.1.9 or
2.1.10.

3.5.2 A Spreadsheet for Five Resonators

The spreadsheet in Figure 3.5.5 was created for a topology
mcluding the coupling sequence CLCLLC from source to load, Figure
3.5.6. There are four data entry boxes enclosing the name and value
cells: %BW; f, GHz; five gi prototype values; and three independent
parallel resistances, Ry, Re, and Rq. '

Example 3.5.3. Provide a fifth-degree doubly-terminated filter having
40% bandwidth at 1 GHz and make maximum use of magnetic coupling.
Problem: Design the N=5 topology with capacitive top coupling at both
ends in Table 3.4.2. Solution: The second N=5 entry in Table 3.4.2
shows that the external resonator equivalent subnetwork from Figure
3.4.5 is required at both ends, and the equivalent interrnal subnetwork
from Figure 3.4.6 is required in the middle. This arrangement is
programmed in the spreadsheet in Figure 3.5.5. The upper network in
Figure 3.5.6 can be converted o utilize the three transformers shown
along with six capacitors in the lower network.

In the spreadsheet in Figure 3.5.5, the 40% can be changed to any

Using *\E1"D1=A"BAC=D2°E2* |
| Rf1 = Rf2 = 1 ohm normalized
Omega 0 |Omega 1 {Omega 2
4 QBW =] 2.5000 1 0.8198] 12198 2P10
B 0000 1 GHz = 8198 2 GHz=[_ 12198 6.28E+09
i 1 2 3 4] 5 NODES V-V DEGE
L R T A R T e A R A-B 73.74
Qi 28670] 3.4280] 40375 3.4280] 2.8670 B-C 78.55
A (FIXEDY s SSs BLSmsiSBIiono R E (FIXED) C-D 78.55
Ri=|  B8.2197 | 40000382195 na0000]  8.2197 DE 7374
VARIABLES NORM [UNNORM(50-ohm) _ |FOR POSITIVE VALUES:
None Ca= 0.3488 1.1103{pF
None Ce= 0.3488 1.1103
i Rd Cd=| 0.8570] 27279
Rb, Rc Cbc=| 0.1744]  0.5551
Rb, Rc Cc=| 04263 1.3570 Rb/Rc GE |  0.0410] Rb GE 3372
Rb, Rc Cb=| 0.7332] 2.3340 Rb/RCLE | 13.1808] RDLE | 108.3391
Rb Tab =| _ 5.7330| 45.6207]nH
Re, Rd Lcd=|  5.7339] 456292
Rd Lde =| 5.7340] 45.6297
Rb {a=| 5.7340] 45.6297 Rb GE 1.0000
Rd Le=| 57340 456297 Rd GE 1.0000
Rb Lb=| 1.2990] 10.3374 RDLE 117 2472
Re, Rd Lc=| 2.3457| 18.6667 RA/Rc GE | 0.0410] Rd GE 3372
| _Rc.Rd Ld=| 1.5479] 12.3179 RILE | 325304
MAX/MIN C's = 4.9140
MAX/MINL's = 44140} - i
WORST RATIO = 49140

Figure 3.5.5. A spreadsheet for the N=5 filter in Example 3.5.3.

other desired bandwidth. The values 1.1468, 1.3712, etc. can be the
lowpass prototype element values for any S5th-order filter (e.g., the
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Figure 3.5.6. An N=5 CLCLLC network adapted for magnetic couplings.

Chebyshev 0.1 dB ripple doubly terminated filter) normalized to 1 ohm
and 1 radian per second.

The three parallel resistances (lowest hatched box) are arbitrary
within the limits defined in lower right-hand columns once any value of
R is entered. Then entry of values for Ry and Rq within the limits shown
produces positive values for all filter elements, normalized and
unnormalized to fo and equal 50-ohm terminations. Setting resistances
Ry and/or Rq to their limits causes certain elements to vanish.

There are equations (not shown) that relate the element values to
the three parallel resistances. That dependence is indicated in the
spreadsheet column alongside the element labels; e.g., Cyc depends on Ry
and Re but not Rq. Choosing any set of parallel resistances does not affect
the response of the filter, only the element values. The ratios of extreme
values of C’s and L’s and the worst of those two ratios are shown at the
bottom of the spreadsheet in Figure 3.5.5. The relative phases of node
voltages A through E are also displayed. For example, see Figure 3.5.5:
the phase of the voltage across inductor Ly lags that across inductor L, by
73.74 degrees. That information is often useful for tuning and
verification.

The greatest value of this design approach is the guaranteed exact
filter response at any point in the Rp, R, Rq parallel resistance space.
This allows adjustment of those three values within known lLimits to
obtain the most acceptable set of positive element values. In this case,
note that setting Ry=Re=4.000 produces Lap=Lac=La=Lc=5.7340
(mormalized). (This is only obvious numerically, but it is consistent with
the equations in Figure 3.4.5.) None of those L's is a function of R, but
Led is, so by the equation for Leg, (3.2.3), set R=5.73402/4=8.2195. The
spreadsheet in Figure 3.5.5 produces all the element values shown,
especially the five equal inductances. The conversion from Pi’s of
inductors to transformers indicated in Figure 3.5.6 can be accomplished
with the equivalence shown in Figure 2.4.10; see [Zverev:529]. In
particular, the transformer between nodes D and E in Figure 3.5.6 is
obtained by splitting Lg into two parallel inductors. Then the primary
and secondary transformer windings, Figure 2.4.10, also could be
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programmed on the spreadsheet and re-optimized using the three degrees
of freedom: Ry, Rc, and Ra.

3.5.3 A Spreadsheet for a Four Resonator Elliptic Filter

The lowpass prototype in Figure 3.5.7 defines the direct-coupled
filter in Figure 3.5.8. The spreadsheet in Figure 3.5.9 is similar to that in
Figure 3.5.3 except that trap couplings from Figure 3.4.7 are utilized.

-
___,__/'zyg\_

3 94

95 ;l—\_ G4 T 9 95=1

Figure 3.5.7. A degree 4 lowpass antimetric elliptic filter for Example 3.5.4.

21.34

Figure 3.5.8. A four-resonator antimetric bandpass filter for Example 3.5.4.

ELLIPTIC FILTER TYPE C N=4 Example Using A'B*C=D*E* with LCLC Couplings

INPUT A ingZRRANOR L 9300
ad- sfinput R4 = 21.3333 JOmega 0 [Omega 1 |Omega 2
2] QBW =| 2.3035 1 0.8062] 1.2403{2 P [f0
f1 MHz =| 130.0038] f2 MHz =| 200.0061 1.01E+(L§
2 3 4 5
.2359 NODES |V-V DEGS
e I s R B R e e ) 5763
} 2.8865 1.4680 3-2 67.63
R1 (FIXED)Z ; JR4 (FIXED) 21 62.55]
Ohms =] 3.7065 I 8 21.3333 1-0 62.55
VARIABLES NORM |UNNORM( Nulls =| 105.6796| 246.0414| MHz
None Ci= 0.5194 56.96
R2, R3 C2= 0.1358 14.90
R2, R3 C32=| 0.1262 13.84 ]
R2. R3 C3= 0.0497 545 40 ]
R3 C43 = 0.0497 5.45 P A N ¥ | ] |
R3 C4={ 0.0556 6.09 20 - ]
R2 L1 = 2.5207 22.39(nH 25 1
R2 121 = 8.1493 72.39 PT'Y | A ] 7
R2, R3 L2=] 17.6901 157.14 sf—— 3+ 1 1 1
R2, R3 L32=| 18.4530 163.92 10 I
R2, R3 L3=] 17.9606 159.54 [ | E— | e —
R3 143 = 8.6484 76.82 0 AN
R3 L4=] 263565 23413 b 05 1 [ 2
MAX/MIN C's = 10.4586 Radians/sgcond
MAX/MIN L's = 10.4560
WORST RATIO = 10,4586

Figure 3.5.9. A spreadsheet for the N=4 elliptic filter in Example 3.5.4.
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Example 3.5.4. A maximally-selective 43% bandwidth filter centered at
161.25 MHz is desired to absorb both a load impedance consisting of a
56.96 pF capacitor in series with a 9-ohm resistor and a source
impedance consisting of a 2.64 pF capacitor in parallel with a 192-ohm
resistor. This is similar to an all-pole filter requirement posed by
[Borlez]. Problem: Design a wideband fourth-degree elliptic filter with
stopband selectivity and passband ripple that absorbs the given
terminations. Solution: Although there are analytical all-pole broadband
impedance matching programs, there are none for elliptic-function
networks. However, a lowpass antimetric elliptic filter design program by
[Amstutz] is available [Cuthbert,1983:356,352]. One lowpass trans-
mission zero (trap) in a 4th-degree filter with an arbitrary stopband
rejection of 30 dB is chosen; see Figure 3.5.7.

The corresponding bandpass network is shown in Figure 3.5.8. It is
constructed by replacement of the gs-Cs lowpass branch by its bandpass
equivalent in Figure 3.4.7 and by replacement of the g1 lowpass branch
by its bandpass equivalent in Figure 3.4.5. The series loaded Q of the
given load at band center is Q;=1.925 and the parallel loaded Q of the
given source at band center is Q5=0.5142. The one degree of freedom
utilized in Amstutz’ program is to vary the ripple in the passband (0 to 1
rad/s) until the given Q of the load is obtained. Normalized to a 1-ohm
load and Qsw=2.3035, that requires g1=Qi/Qsw=0.8358, according to
(2.3.2) and (2.4.4). A passband ripple of 0.0529 dB produces the
required value for g). Fortunately, Qi=g4xQpw exceeds the Qs required
for the source.

The lowpass element values in Figure 3.5.7 appear on the
spreadsheet in Figure 3.5.9. Note: gs=1, which indicates that this is a
modified elliptic-function filter of type b [Cuthbert,1983:351]. The
spreadsheet shows that the unnormalized passband extends from 130 to
200 MHz, and the pair of zeros of transmission (trap null frequencies)
occur at 105.7 and 246.0 MHz; both these frequency pairs are
geometrically symmetric about the passband center frequency. The
SOLVER optimization feature is used as described in Example 3.5.1 to
minimize the worst of both the L’s and C’s ratios; that is shown to be
10.4586 in Figure 3.5.9. All corresponding element values are shown; in
particular, C4=6.09 pF includes the required 2.64 pF that belongs to the
paralle]-RC source. The frequency response is included in Figure 3.5.9,
where the 30-dB stopband selectivity is clearly shown.

The spreadsheet utilized in Figure 3.5.9 also includes the two
universal blocks of hidden cells that are shown in Table 3.5.2; these
function as subroutines to calculate all N=2 and N=3 resonator
subnetwork element values. The upper block solves the N=3 subnetwork
given the six independent parameters %BW through Rec. Twelve
dependent values calculated by equations (3.4.1) and Table 3.4.1 for the



84

%BW | L lowpass|C lowpass Ra Rb Rc
434122 | 1.0546 .2359 21.3333 | 10.7730 | 17.9178
QB LT inv Lab Lb inv Cbc cVv
2.4293 -.0309 8.6484 .0557 1262 -.0253
Omeg-sqd CT Cab Cb Lbc LV inv
4295 -.0133 .0497 .0497 18.4530 | -.0108
%BW | L lowpass Rd Rf QE
43.4122 | 0.8358 | 17.9178 1 1.9252
LX inv Lde Le inv Re CE
-.0937 8.1493 .3967 3.7065 5194

Table 3.5.2. Subroutines for All N=2 and N=3 Element Values.

subnetworks in Figure 3.4.7 are returned in the fourth and sixth rows.
The value labeled “Omeg-sqd” is in fact w_2 from (3.4.1). It is noted in
connection with (3.4.1) and the lowpass subnetwork in Figure 3.4.7 that
as CLp—0, o_—0. This means that the subroutines in Table 3.5.2 that are
in the CHOICES.XLS spreadsheet apply to both the elliptic (traps) and
all-pass (Figure 3.4.6) N=3 subnetworks, with ®_=0 for the latter. The
lower four rows in Table 5.3.2 apply for both N=2 subnetworks according
to the equations and Figures listed in Table 3.4.3.

3.6 Tuning

There are two basic tuning techniques that are applicable for
direct-coupled filters of any bandwidth. Also, there are ways to measure
the loaded Q values and the equivalent coupling coefficients of a filter
that is properly tuned. The underlying phenomena are described below.

3.6.1 Alternating Open- and Short-Circuit Method

This method relies on the narrow-band prototype direct-coupled
network shown in Figure 3.2.1, especially the action of the inverters
between the resonators. At the band center frequency, wo, each inverter
is in resonance and, therefore, is an open circuit. When node II is short-
circuited to ground, the inverter Zgi2 presents an open circuit at its input,
i.e. Ri— o in Figure 3.2.1, in accordance with (3.2.3). Similarly, if only
node IIT is short-circuited to ground, then Re— « and R1— 0.

As originally described [Dishal, 1951], the source at frequency oo 1s
connected to the input of the filter and a high-impedance voltmeter is also
connected to measure the voltage from node I to ground. The load




85

impedance is also connected. All the resonators are completely detuned.
Then:

1. Tune resonator I for maximum voltage at node 1,

2. Tune resonator Il for minimum voltage at node I (input

node),

Tune resonator III for maximum voltage at node I, and ...

4. Tune the last resonator for a maximum or minimum,
depending on whether it is an odd or even numbered
node, respectively.

bl

If the resonators cannot be completely detuned (so they are nearly a short
circuit), then the resonator nodes can be shorted to ground by suitable
conducting straps.

Various considerations for tuning microwave filters using this
method have been published [Matthaei]. Also, it has been observed that
the end resonators are likely to be less accurately tuned by this method,
and it is those end (terminal) resonators that have the greatest effect on
passband SWR. Therefore, any unexpected SWR should be tuned by
varying the end-resonator tuning after the open-short procedure has been
completed. The final response should be that corresponding to the
realized loaded-Q distribution, which is equivalent to the consecutive
coupling coefficients defined by (3.1.1). Dissipative elements affect the
response shape; see Section 2.2.6.

3.6.2 Reactive Input Reflection Function

It has been noted recently that the group delay of a reflection
coefficient at the input of an open- or short-circuited network contains all
the information required to tune direct-coupled filters [Ness]. For
example, consider the three-resonator filter in Figure 3.3.3(a). When
resonators II or III are short-circuited, the input impedance is Zin=0+jXjn.
So reflection coefficient (2.1.10) is defined wrt R11, the desired midband
input resistance of the filter (not wrt the source resistance, which may
differ from Rii):
jX in__ Ru
inn + Rll ’
where there are N resonators. Index k denotes that resonators 1 through
k are not short circuited. Reflection coefficient I'x can be measured easily
and accurately as S;; using a vector network analyzer, and the loci are on
the perimeter of a Smith chart, because there is no real part (r | =1).

Of interest is the group delay of [k, which is similar to the
ordinary transfer group delay and is as easily measured:

r d¢
dk — da) ?

I, = =1,2,-,N, (3.6.1)

(3.6.2)
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where ¢ is the angle associated with T To measure a1, for example,
resonator 2 in Figure 3.3.3(a) is shorted, and input reactance Xin at oo
produces the reflection coefficient in (3.6.1) and its group delay in (3.6.2).
The remarkable relationships to resonator loaded Q's are shown in Table
3.6.1.

Table 3.6.1. Input Reflection Coefficients versus Loaded Q Values.

a [ w, [47]
—4—0F41=Q1’ jfrdzzgza _ZgrdazQ]'*Qs’ _4_Ord4:Q2+Q4,

@Dy @Dy
TrdS:Ql +0 + O, _Z—rdG:Q2+Q4+Q6’

The relations in Table 3.6.1. can be restated for loaded Q’s as functions of
reflection group delay:

Qk = £04l
These reflection coefficients remain accurate in the presence of
dissipative elements as long as the unloaded Q.>10Qx [Atia]. Also, see
the measurement method by [Drozd] described in Section 5.2.6.

(rdk _Fd(kvz))7 k=3’ 4a"',N~ (363)

Example 3.6.1. Confirm the loaded Q values of the direct-coupled filter
in Figure 3.3.3. Problem: Simulate measured Si; and confirm the loaded
Q values. Solution: An analysis program was modified to compute the
group delay in (3.6.2) by first-order finite difference in frequency (0.01%
increment). Using the element values in Table 3.3.1 for a lossless
network, it was found that I'y= 0.06919, I'qe= 0.1382, and 143=0.1382
microseconds. Therefore, Table 3.6.1 and (3.6.3) show that Q1=5.4340,
Q2=10.8581, and Q3=5.4192. These values agree with the design values
in Example 3.3.1. The unloaded Q=100 for the inductors was added to
the simulation; the new reflection values were T'ai= 0.06939, Tqo= 0.1374,
and T'q3=0.1386.

3.6.3 Narrow-Band Reflection Poles and Zeros

The conventional coupling coefficients between resonators are just
the reciprocals of the mean loaded Qs (3.1.1). An accurate way to
measure them for narrow-band filters has been described [Ness]. For
bandwidths less than about 10%, it is well known that the bandpass
reactance transformation having geometric symmetry is approximately
linear:

2

(3 - 5"’—) ~Hw-a,). (3.6.4)
o, o) o,

This fact is used in conjunction with the poles and zeros of reflection

coefficient (3.6.1) to determine the coupling coefficients [Atia]. The
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procedure is again to short and open circuit the resonators in sequence,
but this time measuring the frequencies at which the S11 Smith chart loci
intersect the real axis at the short- or open-circuit ends of the chart
perimeter (because |F|=l). The reflection phase intercepts at arg(I')=0°
are the open-circuit or pole frequencies, and the intercepts at arg(I)=180°
are the short-circuit or zero frequencies. Those frequencies are used in
simple equations to obtain the coupling coefficients, Kii+1; see [Ness].

3.6.4 Wideband Networks Having Exact Responses

Wideband direct-coupled filters have certain resonators detuned to
eliminate the effects of inverter frequency dependence. Consider the
topology in the spreadsheet for four resonators, Section 3.5.1 and Figure
3.4.9. Recall that the amount of resonator detuning is shown separately
for the subsections in Figures 3.4.1, 3.4.2, and 3.4.3 in terms of trim
capacitors C¢ and inductors Lx.

One way to tune a wideband filter is first to ignore the stagger
tuning and then use the open-short methods of Section 3.6.1 and 3.6.2,
which are valid for any passband width. The appropriate resonators can
be retuned to obtain the design response function versus frequency. In
the topology shown in Figure 3.4.9, the load will be shorted and will
provide accurate information for adjusting Ci and/or L., as well as
providing information on the loaded @ and related coupling coefficient
values. The success of the entire tuning operation may be confirmed by
measuring the node-voltage phases, which are available from the design
process (Figure 3.5.3).

3.7 Summary of Direct-Coupled Filters

Coupling coefficients began as the ratio of adjacent capacitors in
the classical bandpass filter topology, consisting of alternating series and
parallel LLC resonators. That ratio was also applied to filters having
resonators of one kind, either all parallel or all series, coupled by
constant-reactance electric or magnetic elements. Thus, the coupling
capacitors, inductors, or magnetic linkages were assumed independent of
frequency, which limited passband widths to less than 20 per cent. The
lowpass (normalized) coupling coefficients were scaled by Qsw for the
corresponding direct-coupled bandpass topologies. Published tables of
terminal Q values (Q; and Q. composed of the end elements and the
respective resistive terminations), along with the sequence of coupling
coefficients, provided all network element values. Uniformly dissipative
elements were derived by predistortion of the response poles, and tables
of filter design data were arranged in descending ratios of element
unloaded Q, to QBw.

A more comprehensive and flexible design concept adds inverters
as the coupling mechanism, i.e. lossless frequency-independent 90°
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transmission lines connecting the resonators. Ideal inverters flanking a
series resonator make a two-port network exactly equivalent to a parallel
resonator. Physical inverters include Pi networks of three inductors or of
three capacitors, the shunt branches being negative elements that are
absorbed into adjacent positive resonator elements of like kind. The Pi
branch reactance magnitude is equal to the inverter Zo, and the inverter
input impedance is simply Zo%/Z:, Zi being the impedance loading the
inverter. This simple inverting action allows design of the filter at its
midband frequency, where all the parallel resonators are anti-resonant
and therefore transparent. Thus, the load resistance is inverted to the
parallel resistance at the next resonator, and so on, to obtain the input
resistance. Because resonator loaded Q’s do not change with impedance
scaling, the choices of parallel resistances provide control of resonator
and inverter reactances and, therefore, all element values, without
affecting the frequency response.

Stopband selectivity is highly visible in terms of the loaded Q
product and the inverter frequency dependence, the latter being either
directly or inversely proportional to frequency. Because one or more
inverters can be anti-resonant traps tuned in the stopband, the selectivity
can be enhanced asymmetrically with an offsetting reduction in required
loaded Q product. The passband width is easily related to the resonator
loaded @ product, so filter design can be based on either passband or
stopband requirements. Passband flat loss is obtained by mismatch of
the source and i1nput resistances. The source resistance relative to one
ohm is included in tables of lowpass prototype network element values.
The ratios of individual resonator loaded Q’s to their unloaded Q factors
simply estimate the power dissipated in the resonators in dB, so that it is
easy to predict the total midband dissipative loss. It turns out that
dissipative loss in the stopband (>20 dB) adds to a reduced mismatch
(reactive) loss, to sum to the original selectivity of the lossless filter, and
s0 is of no consequence in the stopband.

The simplifying assumption of frequency-independent inverters
(coupling elements) causes passband distortion, which is most severe for
equal-ripple response shapes. Recently, it has been shown that passband
distortion can be eliminated by stagger-tuning certain resonators by an
easily calculated amount. A more organized approach is to utilize
equivalent two-port networks that are exact replacements for external or
internal series resonators, or for internal series resonators containing
traps (pairs of zeros of transmission). Now it is possible to design
wideband direct-coupled filters that have no distortion but do require
equal numbers of capacitive and magnetic top couplings.

The parallel resistances (at midband frequency) constitute an ideal
parameter space for control of element values without affecting the ideal
response shape. A feasible region of parallel resistances always exists so
that all elements can be positive. Spreadsheets incorporating point-and-
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click optimization capability are ideal for enforcing various constraints
and obtaining results otherwise unavailable, e.g., minimizing both the
max/min ratios of I’s and C’s. The element values and constraints may
be programmed on the spreadsheets by direct numeric summations or by
evaluating optional equations that are obtainable by algebra. The
equations also show the maximum possible load-source impedance
transformation range in terms of the chosen loaded Q values. The
method of choices does not require any polynomial algebra or synthesis
techniques, and its use is more organized than the equivalent Norton
transformations.

Finally, tuning direct-coupled filters is an organized process at
midband frequency, based on inverter action and/or input reflection group
delay or phase pole-zero intercepts. Information is available on the
loaded Q and coupling values actually realized in the physical network as
described in Section 3.6.2.
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4. Comprehensive Equal-Ripple Filters

4.1 Purpose

This chapter is a bridge between the highly structured approach to
direct-coupled filter design in the preceding chapter and the pragmatic
numerical procedures for broadband impedance matching in the next
chapter. It illustrates what generality was sacrificed and exhibits
phenomena that support efficient algorithms for broadband matching.

The zeros of transmission frequencies uniquely determine the
entire frequency response of a Chebyshev equal-ripple filter, and that
response can be computed easily. The bandpass filters of the last chapter
have equal numbers of transmission zeros at dc and at infinite frequency,
and optionally at one or more at finite frequencies. There are rigid
constraints on the types of coupling between resonators and at the
terminals. Those constraints can be avoided, but at a price of design
complexity, namely, polynomial synthesis.

The basic steps of polynomial synthesis are described in terms of
mathematical complexity and crucial decisions that may or may not avoid
unacceptable results. The consequences of assuming particular transfer
functions are noted, especially for the case of load constraints, which
constitutes broadband matching.

Behavior of network reflectance, the magnitude of the input
reflection coefficient, is observed as a function of each element’s variation
about its nominal value at sampled passband frequencies for typical filter
and broadband match cases. The intrinsic characteristics of those
functions show why an existing alternative to conventional synthesis is
so0 much better conditioned and easily implemented. That method,
iterated analysis, is described briefly; several of its features are employed
for broadband matching in Chapter 5, and its optimization aspects are
more thoroughly developed in Chapter 6.

4.2 Response Continuum

It has been shown that if the number and frequencies of
transmission zeros are known, then the response of a filter that has an
equal-ripple passband is known exactly in both the pass band and all of
the stop band [Daniels]. A small computer program, RIPFREQS.EXE,
will be used to demonstrate how easy it 1s to obtain and display these
critical characteristics.

4.2.1 Transducer and Characteristi}: Functions

The transducer function, H(wn), relates source/load voltages of a
doubly-terminated two-port network. See Figure 4.2.1. In terms of
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Figure 4.2.1. Doubly-terminated filters have resistances at both ports.

maximum poweyr available from the source and power delivered to the
load, the transducer function is

|H(o) = —%s— =1+ & +|K() . (4.2.1)

L

The transducer function is the inverse of the power ratio considered in
Section 2.1.1, a convention chosen to ensure that H(w)>1 for any o. The
characteristic function is K(o) in (4.2.1), and it is generally a rational
function, as is H(w). When K(w)=0, |Hw) |2z = 1+£2 is the flat loss
described in Section 2.2.4. For purposes of an equal-ripple passband,
K(n)=cT(0), where T(») is a Chebyshev polynomial of the first kind, and ¢
is the ripple factor. These Chebyshev polynomials of various degrees all
oscillate in an amplitude range between -1 to +1 within the normalized
domain of -1<e<+l. When |T(e) =1, then the passband ripple is
10Logio(1+s2) dB. When K(w) has a denominator polynomial, the
denominator zeros, the poles of K(w), produce transmission zeros
(attenuation poles) at stopband frequencies.

To clarify what is meant by Chebyshev equal ripple, the capture
property of Chebyshev polynomials is stated [Carlin,1998:307]. Consider
the even positive polynomial of degree 2n, lK(m)l2 = g2Th%(w), having
maximum ripple factor 2 within a lowpass band ~1<o<+1. No other even
positive polynomial of degree 2n which is greater than |K(oo)l2 outside
the passband has a ripple factor less than €2 within the passband. See
Figure 2.2.1: that is an n=4 Chebyshev passband, because it has exactly n
valleys, 1.e. where |K((o) | 2=(. Also, IK((D) |2= £2Th2(0) has n+1 degrees
of freedom, counting ripple factor «.

Other “equal-ripple” responses can be obtained by certain
frequency transformations [Daniels:103], but they do not satisfy the
capture property. From here on, equal ripple means Chebyshev equal
ripple. A test is to draw a horizontal line through the ripples: there must
be N intercepts. Any number less than N is not Chebyshev equal ripple.
For example, type ¢ elliptic-function filters do not have Chebyshev equal-
ripple passbands, but type b filters do. Both types have equal-ripple
stopbands. See [Cuthbert,1983:351].



92

4.2.2 Transmission Zeros

Consider the ladder network in Figure 4.2.2. Transmission zeros
occur when a short circuit exists in parallel or an open circuit exists in
series in the network. The network has three traps, i.e. branches that
cause transmission zeros at the respective trap null frequencies. There
are two parallel resonant traps in series branches and one series
resonant trap in a parallel branch. Count the number of trap zeros of
transmission as NT=3.

Parallel trap Parallel trap

Series
trap

/r

AY
/1

T

Loss Zeros at DC (NZ=1), at Infinity (NIN=3), and at finite
frequencies (NT=3). Filter Order N=NZ+NIN+2NT=10.

o e

= =

Near 0 Frequency Near Infinite Freqﬁency
Nz~1 NIN=3

Figure 4.2.2. Ladder network with transmission zeros NZ=1, NIN=3 and NT=3.

Consider how the network in Figure 4.2.2 appears at frequencies
very near dc: The parallel LC traps in series are essentially short circuits,
and the series L.C traps in parallel are open circuits; therefore, traps can
be ignored. Working from left to right, the shunt C’s and the series L's
can be ignored, leaving just three shunt L’s in parallel. But that is the
same as the one L shown in Figure 4.2.2, so count the number of
transmission zeros at zero frequency (dc) as NZ=1.

Consider how the network in Figure 4.2.2 appears as frequency
approaches infinity: The traps can be ignored again. Working from left to
right, the shunt L’s can be ignored, leaving just the Pi network shown in
Figure 4.2.2. Therefore, count the number of transmission zeros at
infinite frequency as NIN=3. A more detailed discussion is available
[Daniels:308].

As a consequence of the known transmission zeros for the network
in Figure 4.2.2, it and its several equivalent networks must have the
frequency response shown in Figure 4.2.3. The advantages of this
remarkable situation are listed in Table 4.2.1 and are described in the
following sections.
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Figure 4.2.3. The unique frequency response of the network in Figure 4.2.2.

Table 4.2.1. Benefits of Knowing All Transmission Zeros of a
Comprehensive Equal-Ripple Filter.

Exact Lowpass or Bandpass Loss Function vs Frequency Is

Determined,

o Bandpass Filters Do Not Require Geometric Frequency Symmetry,

Bandpass Filters Need Not Be Based on a Lowpass Prototype

Network,

Loss Poles Can Be Asymmetric and Placed Automatically,

The Passband Ripple Is Captured, and Has N Horizontal Intercepts

for N+1 Adjustable Parameters (An Nth-Order Network),

There are N\2 (integral part) Non-Zero Passband Valley

Frequencies Which Can Be Calculated Easily and Accurately,

Iterative Adjustment of Network Values at Frequencies of Zero

Loss Yields Higher Accuracy Than Network Synthesis!
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It has been shown [Daniels:166-8] that there is a sinusoidal
composite-function behavior in the pass bands of Chebyshev equal-ripple
filters with an argument that is a nonlinear function of frequency. These
relationships are shown in Table 4.2.2, where ®a and op are the lower and
upper passband edge frequencies, respectively; ©,=0 for lowpass.

|
|
|
|
| 4.2.3 Passband Selectivity
|
|
|

Transmission Zeros.

Loss = 10Log,[1 + & + £2T*(p)] 4B.

* Lowpass (NZ=0 & NIN Even) or -
Bandpass: (NZ+NIN Even): T (ﬁ ) €o s(ﬂ’ )’

* Lowpass (NZ=0 & NIN Odd): T(ﬂ): sin(ﬁ),
*FlatLoss= 10 Log,,(0 + £*)dB.

'Ripple=/ 10Log,,(1 + ¢?)dB.

B=NZB,/2+ NINB, |2 + iﬂi; Z, = J(0? - 02)/(0? - 02),
A=(0f - ) /(e - ), g =tan|(-214Z)|12 - 22)}, B =tan|(-214)/(12 - 1}

B, = tan"[(— 212l &, / (@, + 10-“’))/(]2]2 ~ (@, /(w, +107° )2)] tan™' is ATAN2.

The filter order or degree, N, is equal to

N = NZ + NIN + 2NT, (4.2.2)

where the numbers of transmission zeros are NZ at zero, NIN at infinity,
and NT traps at finite frequencies. For example, the network in Figure
4.2.2 has N=10 as shown.

Consider the passband selectivity equations in Table 4.2.2 that are
evaluated and plotted in Figure 4.2.3 for the network in Figure 4.2.2.
The equations in Table 4.2.2 include the arbitrary flat-loss and ripple
parameters, £ and g, respectively. Only p determines the frequencies of
the passband peaks and valleys of the characteristic function, which
ile(co)!2 = ¢2T2(B), where f is the somewhat obscure function of
frequency, o, in Table 4.2.2. However, the function B(w) is a one-to-one
mapping, so its inverse is unigue. Thus, the multiples B=kx(n/2), k=1, 2,

., N+1, can be found by secant iterative search on the frequency
variable, ® [Cuthbert,1987:235]. That search algorithm, in program
RIPFREQS.EXE, was found to converge within 5 to 10 iterations with an
accuracy of 11 significant figures, as tested against an N=15 degree
problem given by [Orchard].

Table 4.2.2. Equal-Ripple Passband Equations in Terms of
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Example 4.2.1. Consider the network in Figure 4.2.2. Problem: Find the
frequencies of all the peaks and valleys in the passband for 0.7<0<1.4
rad/s. Trap frequencies are at 0.5, 1.6, and 1.8 rad/s. Solution: Program
RIPFREQS.EXE is run as shown in Table 4.2.3. Recall that the valleys
are the zeros of the characteristic function.

Table 4.2.3. RIPFREQS.EXE Qutput for Example 4.2.1.
Passband lower, upper limits in rad/s =2 0.7,1.4
Number of zeros at dc (NZ: Lp & Cs branches) =? 1
Number of zeros at infinity (NIN: Ls & Cp branches) =? 3
Number of null (L.C trap) frequencies =? 3

Null frequency 1 (rad/s) =? 0.5

Null frequency 2 (rad/s) =? 1.6

Null frequency 3 (rad/s) =? 1.8
Passband Loss Peaks (max) & Valleys (min):

Radians/sec  -Beta Degs

0.70000000000 0.0000 PEAK

0.71605679461 90.0000 VALLEY

0.76600554266 180.0000 PEAK

0.85138964151 270.0000 VALLEY

0.96534181782 360.0000 PEAK

1.08983233414  450.0000 VALLEY

1.20382972986 540.0000 PEAK

1.29342515442  630.0000 VALLEY

1.35449345471 720.0000 PEAK

10 1.38896474129 810.0000 VALLEY

11 1.40000000000 900.0000 PEAK

WIS G W~ H

4.2.4 Stopband Selectivity

It also has been shown [Daniels:165-6] that there is an
uncomplicated function for loss in the stop bands of Chebyshev equal-
ripple filters. These equations are displayed in Table 4.2.4 for lowpass or
bandpass filters. These equations are also evaluated in program

Table 4.2.4. Stopband Loss Equations for Equal-Ripple Passband

Filters.
Loss=10 Log. |14 & 4.5 B z= @ -a)
S = Loglg +g+2_(L+}/L) . = (a)z——a):)’
LEwaZ+waZ/2xZ+1N’N/2xﬁ2+2i
w, Z - w, Z -1 i-i1Z - Z,

RIPFREQS.EXE as an option after the results in Table 4.2.3. The
passband and stopband selectivity for as many as 251 frequencies in
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either a linear or logarithmic progression between specified limits can be
seen and stored in an ASCII file for plotting, such as in Figure 4.2.3.

Because it is easy to calculate the stopband selectivity for any
distribution of transmission zeros, it is also straightforward to use
software to determine the frequencies of stopband transmission zeros to
meet arbitrary selectivity requirements. Such a loss “pole-placer”
program has been described [Daniels:122-5]. Bandpass geometric
symmetry 1s not required, so there can be just one or more such traps.
Sections 4.3 and 4.5 deal with the last bullet in Table 4.2.1: How can the
topologies and element values be obtained for networks specified by their
passband flat-loss and ripple parameters and the transmission zero
locations?

4.3 Challenges of Polynomial Synthesis

It has been observed that, although first-class synthesis programs
are available commercially, they are beyond the reach of many potential
users [Szentirmai], [Orchard]. The next chapter, on broadband
impedance matching, describes two competing methods: a complicated
synthesis procedure and a straightforward numerical procedure. Sections
4.3-4.5 are included to convince the reader that synthesis procedures are
overly complicated and much more ill-conditioned than certain
alternative numerical procedures for many practical but otherwise
challenging network design tasks. A synthesis expert has noted that

“... the modern (insertion-loss) method of filter synthesis and design
involves a very large amount of numerical computations, as well as,
in most cases, the need to make choices that are anything but clear
or simple. Furthermore, the numerical computations are nearly
always very illconditioned, necessitating the use of either a large
number of decimal places or esoteric procedures to overcome.”
[Sentirmai].

4.3.1 Underlying Concepts

A recent book by an expert on wideband circuit design
[Carlin,1998] has nine chapters, the first four of which are devoted to
general properties, responses, energy telations, and various matrix
representations of linear time-invariant circuits. ~ In addition, there are
more than 40 pages of appendices that outline the properties of analytic
functions and the essentials of linear algebra. Apparently, that
background is sufficient to synthesize wideband circuits.

4.3.2 Mathematical Operations and Sensitivities

The design of linear time-invariant circuits requires creating and
evaluating real, rational polynomial functions. The computational tools
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used in network synthesis span the realm of numerical analysis.
Polynomial root finders are required, and roots are often allocated to left
and right-half planes (spectral factorization) and then multiplied together
into new polynomials. Many subsequent mathematical operations are
trivial additions and subtractions of even and/or odd parts, where the
challenge is programmed bookkeeping. Other procedures require
solutions of sets of linear equations, algorithms for continued or partial
fraction expansions, and synthetic division.

Non-trivial synthesis problems cannot be solved by straightforward
manipulation of polynomials, as just suggested. The zeros of the filter
polynomials are grouped close together near the edges of the passband, so
that exceedingly small changes in the polynomial coefficients radically
affect the locations of the polynomial zeros. This very large sensitivity of
the roots with respect to (wrt) the coefficients is in stark contrast to the
very small sensitivity of the element values to those same roots
[Szentirmai]. Overall, the sensitivity of the element values wrt the
coefficients of the polynomials in the matrix describing a network easily
may be as high as 106 in very modest problems {Orchard]. It has been
estimated that the necessary number of digits required for ordinary
synthesis methods is roughly equal to the degree of the filter, N
[Temes:113].

Historically, there have been three different approaches to
avoiding the ill-conditioning. First, the product method represents the -
polynomials by their roots and a scaling multiplier at all times, so that
the polynomials are never formed [Skwirzynski]. Second, a bilinear
frequency mapping that spreads the locations of the zeros can be
employed, thus accomplishing the synthesis in a less sensitive domain.
Coincidentally, that is also the domain for observing the comprehensive
filter properties described in Section 4.2 [Daniels:108]. Third, the filter
element values can be adjusted to match the poles, zeros, and ripple
factor of the characteristic function; a technique that trades computing
time for high accuracy. This third method, iterated analysis, is described
in Section 4.5. It also depends on the effect each element has on certain
responses, as described in Section 4.4. In fact, it is the complexity of
synthesis and the simple efficiency of iterated analysis that leads to the
GRABIM technique described in Section 5.4.

4.3.3 The Approximation Problem

Consider equal-ripple passband filters with optional transmission
zeros (traps) at finite frequencies in the stopbands. The equal-ripple
response is one approximation to a constant, usually met with the
Chebyshev polynomials of the first kind. Another common approximation
is the maximally-flat criterion, which has the maximum number of error
derivatives equal to zero at the reference frequency. Also, there are the
least-squares method to minimize mean errors, and the interpolation
method to make errors vanish at a number of discrete passband
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frequencies. Section 5.3.1 explains that when filter loads are not both
resistors, 1.e., the broadband match situation, doubly-terminated filter
transfer functions are not the optimal response functions.

4.3.4 Realization of Element Values

This 1s the most complex step, the synthesis of one of many
possible equivalent network topologies. It is where the sensitivity
problem plagues the result. When there are no traps, an LC ladder
network is the result of applying a continued-fraction expansion of a
rational polynomial, 1.e. Cauer realization of a lossless one-port network.
Similarly, applying a partial-fraction expansion of a rational polynomial
results in a Foster realization, a less practical topology [Carlin,1998:217-
223].

Lossless network realization employing continued- and partial-
fraction expansions do not guarantee positive element values. However,
there is a parametric representation of Brune functions that is similar to
and slightly more complicated than the classical Foster functions
[Fettweis], [Forster]. For example, varying the polynomial roots of filter
functions to obtain some constrained selectivity objective might meet the
objective but result in a non-physical network. The parametric Brune
functions are guaranteed to result in a physical network, even before the
network in its equivalent topologies is realized. That substantial
advantage is seldom fully utilized.

Cascade synthesis is appropriate for realizing transmission zeros
on the jo axis, in the RHP, and those zeros (perhaps multiple) on the real
(o) axis of the Laplace s plane [Carlin,1998:252]. The latter are not
academic, because they can have a beneficial effect on group delay in
practical direct-coupled filters {Levy,1995].

4.3.5 Road Map for Topologies

Whatever network topology results from synthesis, there are
usually many equivalent topologies to realize the same selectivity
function. There are several small equivalency transformations available,
as discussed in Section 2.4.4. The question of how many equivalent
networks exist has been answered in terms of the locations of
transmission zeros and terminal impedance behavior.

When no transmission zeros are at finite frequency, i.e. no traps, it
is not difficult to tabulate the number of canonic equivalent networks —
those having the minimum possible number of elements. This
information appears in Table 4.3.1 [Kim]. Refer to (4.2.2); the data in
Table 4.3.1 apply for NT=0, so that N=NZ+NIN. Lowpass networks,
NZ=0 in Table 4.3.1, are unique (first column) as are highpass networks,
NIN=0 (diagonal). Entries in each row are symmetric wrt the midpoint.
Bandpass networks exist when 0<NZ<N, and they are most numerous at
the midpoint of each row. The doubled squares contain the number of
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Table 4.3.1. The Number of Equivalent Canonic Ladder Networks
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equivalent canonic ladder networks realized by the standard reactance
transformation from lowpass to bandpass (2.4.3). Comparison of Tables
3.4.2 and 4.3.1 confirms that the consideration of only direct-coupled
shunt resonator topology is indeed limiting.

There is a general classification of reactive ladder filters, including
traps for real transmission zeros (on the real axis of the s plane)
[Skwirzynski]. There are 24 classes of lowpass, highpass, and bandpass
networks classified by the impedance behavior at the terminals at dc and
infinite frequencies. Each class has dozens of permutations which are
easily generated by programming a computer [Mellor].

Whatever topology 1is obtained and no matter what
transformations are applied, an unacceptably wide range of element
values, including negative values, is always possible. For example, the
sequence of the set of null frequencies assigned to the three LC traps in
Figure 4.2.2 has a drastic effect on element values. Negative element
values may be avoided, whenever possible, by assigning the null
frequencies nearest the passband edge to the trap branch situated in the
middle part of the network [Saal].

4.4 Element Responses at Discrete [Frequencies

The transducer and characteristic functions, H and K in (4.2.1), are
two responses of a network. Because these functions can increase
without limit, it is often more convenient to observe the reflection
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coefficient in (2.1.2), which is bounded between zero and unity. The
characteristic function is related to the reflection coefficient, p, by

2
'KF = 'pl 2 -
1~|d]

Therefore, K=0 when p=0 and K- o when lpl—)l, with 1:1 corre-
spondence in between.  What is meant by “element response” is how
reflectance | pwi) | varies with any ONE branch value, ©.g. Versus any one
of the L or C elements in Figure 4.2.2. Each element is varied from 0.1 to
10, a range that is reasonably inclusive in light of branch 1+Q2
impedance levels within the passband. This is rather like a wide-scale
partial derivative in that all the other element values are fixed, ie., a
cross section. It clearly is useful to observe a set of reflectances

corresponding to a set of passband frequency samples as the one element
value is varied.

4.4.1 Filters

Doubly-terminated filters are LC two-port networks that have
resistive terminations at both ports. Both lowpass and bandpass
networks have similar element responses.

(4.4.1)

Example 4.4.1. Analyze the element responses for an N=5 lowpass
Chebyshev prototype filter having 1 dB passband ripple. Problem:
Design the filter, find the frequencies of the passband peaks and valleys,
and analyze the input reflection magnitude versus each of the five branch
element values. Solution: Use program ALLCHEBY.EXE to find the
element values; this filter has a symmetrical topology. Use program
RIPFREQS.EXE to find the passband peak and valley frequencies, and
use an analysis program to calculate [p| while varying each of the
elements in turn.

The graph and notation in Figure 4.4.1 show the result for branch
1, capacitor C; that is in parallel with a 1-ohm load resistor (not shown).
The abscissa is the value of C; over two decades centered on unity, and
the ordinate is the reflection magnitude wrt 1 ohm, |p/, looking in at Cs.
The nominal (design) value is C1=2.1349, and the six curves correspond to
the numbered peak and valley frequencies listed. This filter has no flat
loss, ie. Ri=R2=1, and &=0 in (4.2.1). Therefore, K |=0=] pl at dc
(coincides with the abscissa). The other two valley frequencies shown
have a clearly-defined reflection zero at C1=2.1349. It is interesting to
note that at C;=2.1349 the three curves for the peak frequencies all
intersect at ]p |=0.4535, corresponding to 1.0 dB ripple.

The graph and notation in Figure 4.4.2 show the result for branch
2, the inductor Lo. The nominal (design) value is Lp=1.0911. Again there
are two distinct valley-frequency functions reaching IK|=| P | =0, and the
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Figure 4.4.1. Reflectance versus branch 1 C for Example 4.4.1.
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Figure 4.4.2. Reflectance versus branch 2 L for Example 4.4.1.

three peak-frequency functions intersect at lpl=0.4535. The envelope
function is defined to be the arc segments of the frequency curves that
constitute the worst-case |p(mi)l versus Lg, i = 1, ..., 6. Note that it is
arc-wise continuous with discontinuous derivatives at the knots (arc
joints) and has a minimum at [2=1.0911. The same can be said for
Figure 4.4.1, except that the minimum of the envelope function does not
occur at the prototype value of C;=2.1349. The zeros of characteristic
function K (and p) are the basis for the iterated analysis method in
Section 4.5, and the envelope function is the basis of the grid approach to
broadband impedance matching (GRABIM) in Section 5.4.

It is instructive to consider the element sensitivities in light of
Figures 4.4.1 and 4.4.2. Conventional Bode sensitivities are normalized
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derivatives of a response wrt each element value [Cuthbert, 1983:101).
The derivative of the reflectance for each frequency can be seen as the
slope of each curve in Figure 4.4.1. The reflectances for the two valley
frequencies are equal to zero at Ci1=2.1349 farads, where the slopes are
large and depend on location for sign. The Bode sensitivities (slopes) at
the peak frequencies are more benign, and they vary among the peak
frequencies. However, it is clear that the Bode interpretation provides
sensitivity information for each frequency only for small perturbations of
the branch element value. Bode sensitivity is not applicable when the
design goal 1s to minimize the worst-case reflectance over frequency, i.e.
the envelope. The classical filter design in Example 4.4.1 is not optimal
in the envelope sense; branch 1 is not optimal, while branch 2 appears to
be optimal, in Figures 4.4.1 and 4.4.2, respectively. The design goal is
met only when all branches are optimal.

4.4.2 Single-Match Broadband Networks

Figure 4.4.3 reproduces Figure 2.4.1 and adds the notation for both
the load Q, Q1, and the source Q, Qs. It is noted in Section 4.2.1 that

N Even e

Figure 4.4.3. All-pole lowpass prototype networks with Q. and Qs.

equal-ripple filters have N+1 degrees of freedom: the N element values
and the ripple factor, €. A single-match network has one termination that
includes reactance(s) along with the resistance. The classical broadband
matching case described in Section 5.2 has the load composed of go and
g1, as indicated in Figure 4.4.3, so that Qu=gigo i1s a constraint that
removes one degree of freedom. (The first element of the matching
network is go, because g is a part of the load.)

Over a given passband width, it is possible to minimize the
maximum dB ripple IF the zeros of K(w) are abandoned, i.e. if flat loss is
accepted as shown in Figures 2.2.1 and 2.2.2. Typical single-match
prototype design data are shown in Table 4.4.1. Note that there is 0.6772

‘dB flat loss and the maximum passband loss peaks at 0.8418 dB, the

minimum possible peak dB given the Q=2 constraint and the Chebyshev
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response. The insertion loss interval from 0.6772 to 0.8418 dB
corresponds to 0.3800< | P | <0.4198.

Table 4.4.1. ALLCHEBY Single-Match N=4, Q1.=2, 150% BW.
Is this a Matching or a Filter (QL=0=QS) network (_,F)? M
N,QLoad,%BW =? 4,2,150
Is Source Loaded Q Optimal, Given, or Infinite (_,G,I)? O
MAXIMUM INSERTION LOSS FOR INFINITE N IS 0.5707 dB
THIS INSERTION LOSS FROM 0.6772 TO 0.8418 dB
THIS dB FLAT LOSS = 0.6772
THIS dB RIPPLE = 0.1646
SWR FROM 2.2256 TO 2.4469
RETURN LOSS FROM 8.4051 TO 7.5399 dB
Lser or Cpar G(1)=3.0000 Q(1)= 2.0000
Cparor Lser G(2)=0.6781 Q(2)= 0.4520
Lser or Cpar G(3)=3.3359 Q(3)= 2.2240
Cpar or Lser G(4)=0.3203 Q(4)= 0.2135
Ohms or Mhos G(5) = 2.4469

Example 4.4.2. Analyze the element responses for an N=4 bandpass
Chebyshev single-match broadband network based on the prototype filter
data in Table 4.4.1. Problem: Design the filter with the wideband direct-
coupled topology in Figure 3.4.9, find the frequencies of the passband
peaks and valleys, and analyze the input reflection magnitude versus
each of the five branch element values. Solution: Design the network
according the spreadsheet in Figure 3.5.3, use program RIPFREQS.EXE
to find the peak and valley frequencies, and then analyze the resultin
network. ’

The graph in Figure 4.4.4 shows the result for the valley
frequencies versus the parallel inductance, Lj, in the second branch next
to the specified RoCi load. The nominal value is 1.;=4.2121 henrys. The
nature of broadband matching means that there are no zero values for
either the characteristic function or the corresponding reflection function.
The minimum reflection magnitude is 0.3800, corresponding to a
transducer loss of 0.6772 dB.

The graph in Figure 4.4.5 shows the result for the peak
frequencies, where the maximum reflection magnitude is 0.4198,
corresponding to a transducer loss of 0.8418 dB. Program ALLCHEBY
- computes the element values so that the maximum reflection magnitude
is the minimum possible (a minimax) for a specified Qi1=2.0. That
produces the maximum-possible gain bandwidth when the characteristic
function is Chebyshev.
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4.4.3 Double-Match Broadband Networks

As Figure 4.4.3 shows, the termination Q’s could both be specified,
so that in addition to QuL=gigo there could be a specified Qs=gngn+1.

Now
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there is no degree of freedom left to minimize the maximum ripple. In
the single-match case, as in Table 4.4.1, increasingly larger values of
degree N, the number of lowpass prototype elements, can force the dB
ripple to zero and a flat transducer loss of 0.5707 as shown for N— o0,
However, zero ripple and flat transducer loss over any finite passband
cannot be obtained in double-matching problems no matter how great the
degree N [Carlin,1998:413]. The reader is invited to try program
ALLCHEBY with the entries as in Table 4.4.1 but specifying a given
Qs=1; for N=15 there is still a ripple of 0.7598 — it will not approach zero
for N—» oo,

4.4.4 Lessons Learned

Section 4.2 shows that knowledge of transmission zero locations for
lowpass or bandpass filters having a Chebyshev equal-ripple passband
completely determines the entire selectivity function of such filters.
Especially, the passband frequencies of the valleys and peaks can be
obtained easily and accurately.

Section 4.3 shows that getting the element values of such networks
by synthesis techniques requires a sophisticated background in
mathematics, numerical analysis, and filter theory. Even so, the
resulting element values often are either negative or have unacceptably
wide ranges. There are usually large numbers of equivalent canonical
(minimum number of elements) topologies, and the application of the
various transformations of topologies is tedious and confusing.
“Bandpass filters are much more complicated than lowpass filters and the
choice of best configuration often requires considerable skill and
experience” [Orchard:1089). It was concluded that either the designer
could afford to have access to first-class synthesis programs or the
designer needed to be a specialist in the synthesis field.

Section 4.4 shows that there are certain trends as to how
individual elements affect filter response at critical frequencies. The next
section reviews how the desired zeros of the filter characteristic function
in (4.2.1) can be obtained simply and accurately by varying individual
element values. The GRABIM technique in Section 5.4 shows how to
obtain a starting point near the final values and how to work with
arbitrarily-constrained matching problems, where the arc-wise
continuous envelope function (Figures 4.4.1, 4.4.2, 4.4.4, and 4.4.5) must
be minimized using all network elements, while discarding unneeded
elements.

4.5 Synthesis by lterated Analysis

Although synthesis of ladder filters in the Laplace s plane is badly
conditioned numerically, analysis of such ladder networks at discrete
frequency samples can be accomplished simply and very accurately. It is
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also very little extra work to obtain the exact derivatives of the response
at those frequencies wrt all the values of ladder elements. Iterated
analysis [Orchard] is the automated adjustment of the element values
(variables) to obtain characteristic function zeros at the desired
frequencies. The number of degrees of freedom can be made equal to the
number of constraints, so there is an exact solution, i.e. no least-squares
or higher-order compromise is required as is often the case [Kintscher].
Iterated analysis produces element values that are as accurate as those
obtained by explicit equations when available, e.g. those in Section 5.2.4.

4.5.1 Zeros and Poles of the Characteristic Function

Suppose that there is no flat loss in a doubly-terminated filter, 1.e.
8=01n (4.2.1). Then the transducer loss is

& =10 Log,, {1 + |K(w)|'} aB. (4.5.1)

The ripple factor, &, is now contained as a scale factor within
characteristic function K. Zero transmission loss corresponds to K(wi)=0,
and the w; are readily available from program RIPFREQS for Chebyshev
equal-ripple passband filters, as illustrated in Table 4.2.3. There are
N\2 (integral part) non-zero passband frequencies of zero transmission
loss, where N is the degree of the network. The characteristic function
K(w) is rational, and the zeros of K are in its numerator. The poles of K
are the transmission zeros (¢— ), and they are zeros in the denominator
of K at frequencies related to the trap branches in the ladder network.

By (4.2.2), the degree of the network is N, where N=NZ+NIN+2NT
for numbers of transmission zeros at zero, infinite, and trap frequencies,
respectively. Chebyshev equal-ripple filters must be of even degree
except in one lowpass case where NZ=0 and NIN is odd, so that N 1s odd;
the latter are symmetric filters. Symmetric Chebyshev filters have equal
resistive terminations, Ri=Ry=1, and can always be divided into two
back-to-back identical networks.

4.5.2 Characteristic Zeros of Ladder Filters

The ABCD chain matrix of series and parallel branches is shown in
{(2.6.5), where it is noted that for lossless networks A and D are real and
B and C are imaginary. From here on, all four ABCD parameters are
considered real, so that jB and jC are used in place of the earlier B and C.
For an ideal transformer with turns ratio t, A=t, D=1/t, and B=0=C. The
overall ABCD chain matrix of an entire ladder network is just the
product of all the component ABCD matrices, and it is easily computed at
any particular frequency.

The overall ABCD chain matrix is related to the characteristic
function by [Cuthbert,1983:50]

2K(w) =(4-D) + {(B-C). (4.5.2)
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This means that at each non-zero passband frequency where K=0, there
are two constraints: (A~D)=0 and (B-C)=0. So, for most filters where N is
even, there are 2x(N\2)=N constraints. For symmetric lowpass filters
where N is odd, there are 2x(N\2)=N-1 constraints.

Notice that various sets of element values can make the constraint
functions (A-D) and (B-C) positive or negative. These are constraint
functions, and their zeros as functions of each element are portrayed in
Figures 4.4.1 and 4.4.2, which plot the magnitude of the input reflection
coefficient. However, the reflection magnitude is composed of the sum of
the squares of the two constraints, and therefore has a distinct minimum.
The slope (first derivative) of the curves in the figures is more
representative of each of the two constraints. Any way they are viewed,
the pair of constraint functions for K=0 in (4.5.2) are very well defined
and conditioned for accurate optimization.

4.5.3 Balancing Variables and Constraints

Iterated analysis takes advantage of the fact that the number of
constraints can be made equal to the number of variables. It has been
stated that there are N+1 degrees of freedom in a Chebyshev equal-ripple
ladder network; there are N of the I, and C elements plus the ideal
transformer’s turns ratio to be varied. This statement assumes that the
transmission pole {(trap) frequencies are enforced; e.g., the parallel L.C
trap in a series branch in Figure 3.5.7 has ga as its variable parameter,
with C3 always adjusted so that branch is always anti-resonant at an
assigned stopband null frequency.

For networks of even degree N, there are N constraints in (4.5.2).
It is convenient to express the ripple factor in terms of the dB ripple, ox:

£=J10"° _1. (4.5.3)

Then, for the lowpass, N-even (“antimetric”) case, one of the N+1 degrees
of freedom can be removed by assigning the transformer turns ratio the
value to allow R;=Rs=1:

t=l+e&" +¢. (4.5.4)

For all other cases of even degree N, which are bandpass networks, it is
convenient to use the peak at the upper passband edge frequency as an
added constraint [Orchard]. For symmetric bandpass networks

(B-C)-A2e=0, (4.5.5)
and for antimetric bandpass networks

(4-D)-A2s=0, (4.5.6)
where

A= pye0)x (-, 4.5.7)

In (4.5.7), NU is the number of transmission zeros (trap nulls) in the
upper stopband, and NIN is the number of transmission zeros at w=co.
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Input reflection coefficient pi(w), Figure 4.2.1, at infinite frequency is
equal to +1 (infinite input impedance) or —1 (zero input impedance),
corresponding to two opposing points on the real axis of a Smith chart.

For the symmetric lowpass network case having odd degree N,
there are N~1 constraints in (4.5.2) and the ideal transformer is not
required, because Ri=Rs=1. The easiest way to balance the number of
constraints and variables is to remove one variable by simply enforcing
an arbitrary lower bound on one of the N elements and then observing
the dB ripple at a peak frequency after optimization of the remaining
elements (variables). The same method can be applied for the bandpass
cases instead of (4.5.5)-(4.5.7). See Example 4.5.1 in Section 4.5.5. An
alternate constraint for the symmetric lowpass network of odd degree N
is to constrain the sum of the element values; see [Orchard:1092].

4.5.4 Efficient Network Analysis

The lossless ladder network elements in the iterated analysis
method are inductors and capacitors and one ideal transformer. The
ideal transformer is mentioned in Section 2.4.4, and its only parameter is
its turns ratio, t, which causes an impedance transformation of t2 that is
independent of frequency. The overall ABCD chain matrix of an entire
ladder network is just the product of all the component ABCD matrices;
at any particular frequency, the component matrices can be processed one
at a time using only four real operations: add, subtract, multiply and
divide. The assimilation of the individual chain matrices to compute the
overall ABCD matrix is computationally very fast, because 200 MHz
personal computers (PC’s) perform any of the four operations with high
accuracy in about a microsecond. The details of assimilation of
consecutive ABCD sections are presented in Section 6.2.3.

Theoretically, the exact derivatives of any standard transfer
parameter of a lossless network with respect to (wrt) all of the elements
can be obtained by just one analysis of the network per frequency. In
practice, especially for derivatives of A, B, C, and D, it is computationally
more efficient to make two analyses per frequency.

The equations and algorithm for computing the exact derivatives
are provided in Section 6.2. It is sufficient here to indicate that initially
all the unitized (=1, etc.) branch reactances (or susceptances) for the L’s,
C's, and LC trap branches are computed and stored. The first analysis
consists of starting with the 2x2 ABCD matrix of the ideal transformer at
port 1 and assimilating the following LC branch elements in sequence,
storing two of the four ABCD parameters accumulated up to each
component. The second analysis at the same frequency starts at port 2
and works toward port one, evaluating the equations for the exact
derivatives of A, B, C, and D wrt each component parameter.
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4.5.5 Efficient Optimization

Although there are as many equations as unknowns, the equations
are nonlinear, so that an iterative search must be made from a starting
set of variables (L. and C values and t) in the column vector x? to find the
set of variables, x*, that satisfies all the constraints. The constraints to
be made equal to zero by varying x are found in (4.5.2), (4.5.5), and
(4.5.6). The constraints can be collected in a vector of constraint
functions, c(x); e.g., ci(x)=A-D and c2(x)=B-C at w1, ws, .... . Then the
partial derivatives of each constraint function, ci, wrt each variable x;, are
assembled in a Jacobian matrix, oJ:

s
= axj > (458)

which designates the ith row and the jth column. Vector ¢ and matrix J
can be formed two rows at a time corresponding to (4.5.2) and the two
analyses at each frequency [Orchard:1093]. The Jacobian matrix is
square in this situation.

The Newton iteration with the Jacobian matrix [Cuthbert,
1983:125] produces a sequence of corrections, Ax, to the current vector of
variables: ‘

Ax=-J"¢c. (4.5.9)

In practice, the Jacobian matrix is NOT inverted; it remains on the left-
hand side of (4.5.9), and Ax is found by LU factorization {Cuthbert,
1987:98-9].

The starting vector, x°, is not critical in lowpass filters. Because
normalization with both frequency and impedance is employed, starting
element values and a turns ratio somewhat larger than unmity are
appropriate; see the equal-element filter values in Figure 2.4.4. That
start may not work reliably for bandpass filters, but methods to obtain
good starting values for the Newton iterations and to avoid negative
elements are described in detail in the next two chapters. Briefly, the
starting vectors can be processed first with a reasonably efficient grid
search to obtain an x?° suitable for the sequence of Newton steps defined
by (4.5.9), The grid search and the Newton optimization can be
accomplished in log space, which amounts to varying the element value
in dB; in that way, no element value can become negative.

The element values obtained from this iterative process can be
expected to be as accurate as those from explicit equations when
available, e.g., those in Section 5.2.4.
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Example 4.5.1. An equal-ripple filter passband extends from 0.7071 to
1.4142 rad/s with the topology shown in Figure 4.5.1. Problem: Design
this filter using the iterated element method. Solution: Using NZ=5,
NIN=1, and NT=0 in program RIPFREQS shows that the three valleys
where K=0 are at 0.72905113, 0.92553926, and 1.31729198 rad/s. The

I I(
1 ¢, AYON
L, L<X —=C, L, 1

Figure 4.5.1. A bandpass network with NZ=5, NIN=1, and NT=0.

degree N=6, so there are six constraints according to (4.5.2). Arbitrarily
adding the constraint that C3 = 2 farads makes the number of equality
constraints equal to the degrees of freedom, N+1=7.

The element values are obtained by a sequence of Newton steps,
(4.5.9), until the magnitudes of all the constraints are less than 0.000005.
The final element values are shown in Table 4.5.1. By analysis at the
four peak frequencies from program RIPFREQS, the uniform ripple is
found to be 0.268 dB. Decreasing the value assigned to Cz would
decrease the dB ripple.

Table 4.5.1. Element Values for Example 4.5.1 Obtained by
Iterated Analysis.

In henries and farads:
Element Value

Ia 0.91425
Ca 1.59397
Cs 2.00000
Ls 0.29803
Cs4 1.59397
Ls 0.91425

4.6 Summary of Comprehensive Equal-Ripple Filters

This chapter is a bridge between the highly structured subject of
direct-coupled filter design and the vast space of analytic functions that is
encountered in broadband impedance matching. A useful concept is that
of Chebyshev equal-ripple doubly-terminated filters, which depend only
on the locations of transmission zeros on the jo axis. Lossless LC network
topologies have specific numbers of transmission zeros at zero, infinite,
and finite frequencies. Once those numbers are known and the passband
flat loss and ripple are given, then the selectivity of any such filter is
uniquely determined. The passband frequencies where the peaks and
valleys occur can be found with great accuracy by program RIPFREQS.
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Naturally, it would be nice if there were an easy way to calculate
the values of the elements in the selected network topology. Other than
using first-class synthesis programs that are beyond the reach of many
designers, practical application of network synthesis requires
considerable skill and experience, especially for bandpass filters. A brief
review of the scope of the underlying concepts, mathematical
complexities, and numerical ill conditioning is provided to emphasize the
difficulty of that process.

However, a very consistent picture emerges from observing the
benign behavior of the reflection magnitude response (reflectance), as a
function of one network element at a time, at critical passband
frequencies, namely at the passband valley and peak frequencies. For
filiers without flat loss, that cross-sectional behavior shows that each
valley has a single well-behaved zero of reflection versus each individual
branch value. That characteristic leads to the method of iterated
analysis. For filters with flat loss, necessarily those employed for
broadband matching (i.e., maximum gain-bandwidth), the reflectance
curves versus the branch variables at valley frequencies all intersect at
the minimum reflection magnitude. In all cases, the curves versus each
branch variables at peak frequencies all intersect at the maximum
reflection magnitude. This consistent benign behavior is explained in
Section 5.4.3.

The iterated analysis method of synthesis is outlined in order to
provide a practical and less complicated filter synthesis technique, and to
set the stage for the grid approach to broadband impedance matching
(GRABIM) in Chapter 5. For no flat loss, the loss zeros and poles of the
characteristic function are related to the response continuum phenomena
and ladder network topologies. The numbers of variables and constraints
are described in order that they be obtained in equal numbers, thus
avoiding the overdetermined systems of equations that are typical of
most optimization, e.g., nonlinear least squares. Pairs of constraint
functions are simple combinations of the network’s overall ABCD
parameters obtained efficiently and numerically at each valley frequency.
The exact partial derivatives of those constraints are also obtained at
negligible cost in the algorithm described.

Finally, an iterated Newton search beginning at an arbitrary
starting set of element values is described in terms of a square Jacobian
matrix of partial derivatives. The methods suggested for finding reliable
starting values and avoiding negative element values are mentioned
because they are employed in Chapter Five and described in detail in
Chapter Six. It is hoped that this chapter will assist the reader by
providing insight and enhancing recognition in the next chapter’s
development of broadband impedance matching.
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5. Matching Networks

This chapter shows how to design lossless two-port doubly-
terminated networks that have specified reactances incorporated in one
or both terminations — the single- or double-match cases, respectively.
The objective is maximum power transfer over wide frequency. bands.
Generalized reflection coefficients play an essential role, because the
solution is to design a network that will minimize the reflectance of the
specified load over the passband. Because a constant reflectance
magnitude describes a circular neighborhood of impedances centered on
the normalizing impedance, broadband matching also concerns
impedance matching over a pass band. '

The first case considered is matching different terminating
impedances at a single frequency. This is the case of matching an
infinitesimal output neighborhood to its input image normalized to a
source impedance, 1.e., conjugate matching. The main tool is the loaded
Q parameter, QL.

Analytic gain-bandwidth theory is described next. It maximizes
power transfer over the passband from a resistive source to a simple load
impedance, which may consist of an LR or a CR lowpass network
termination, or the corresponding RLC bandpass network termination
having a given Q. Although this concise theory has limited application
to most practical problems, it provides insight into the fundamental
limits of the gain-bandwidth tradeoff in terms of Qpw/QL. At most, two
lowpass load reactances, or the equivalent two bandpass resonator load
terminations, can be processed using analytic theory as a design tool.
The double-match problem also can be processed, but the result is even
less likely to solve practical problems.

The escape from impractical design limitations came with
introduction of the real-frequency technique (RFT) [Carlin,1977]. Most
terminating impedances are known by their tabulation as measured at a
set of discrete passband frequencies. That approach is contrasted with
trying to model a terminating impedance as a simple RLC one-port
network. Reflectance at each tabulated frequency is considered at both
ends of the lossless two-port matching network, which is synthesized in
the last step. Unfortunately, intermediate steps require several kinds of
numerical optimization as well as polynomial synthesis. The necessary
skill and experience is often a serious obstacle for the designer. The real-
frequency technique is reviewed because it introduces several important
concepts, has displaced analytic theory, and is mentioned continually in
the literature [Cuthbert,1994a].

Finally, the grid approach to broadband impedance matching
(GRABIM) is described because it requires minimal skill and produces
practical results immediately. This technique is superior to the RFT in
- almost every case. It begins by designating a stored or a user-specified
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LC and transmission-line ladder network topology of chosen complexity.
A robust grid search over the logarithmic space of likely element values
minimizes the maximum reflectance over all passband frequencies to find
a small neighborhood of the likely global minimum. Then minimax-
constrained optimization locates the precise minimum while maintaining
positive elements and removing those that are unnecessary.

5.1 Single-Frequency Matching

This topic emphasizes the central role of the loaded-Q parameter in
LC network design and the 1+Q2 method as the basis of a grid search
technique for broadband impedance matching [Abrie, 1985,1991]. The
two-port cascade transmission line is also included, because it is an
allowable element in the GRABIM method in Section 5.4.

The two-port matching networks are assumed lossless, and the
conjugate impedance match (zero complex reflectance) required at the
input terminals exists at every interface throughout the network at that
frequency. Design of two-element “el” sections and their role in
constructing three-element T and Pt networks are described, to introduce
the role of transformation Q’s for ladder networks of any length.

The generalized reflectance coefficients in (2.1.4) are bilinear
functions of each network L or C branch and the load impedance, as
defined in Appendix Section A.1. For the cascade transmission line
(CASTL), its load impedance and the tangent of its electrical length are
bilinearly related, but its characteristic impedance, Zy, is not bilinearly
related to generalized reflection functions. However, the pertinent effect
of Zo on reflectance is essentially the same as LC elements and can be
explained easily. The same can be said for the ideal transformer as well.

5.1.1 Zero Reflectance

Recall the generalized reflection coefficients in (2.1.8):
Z, "Z; :'Zf _ZTI:IZL “le|
2, +Z5| |2, + 2| |z, +Z,,]_'
Reflectance Ial is invariant at the input, interior, and load interfaces of
lossless linear networks, including those containing CASTL’s. In (5.1.1),
Zs 1s the source impedance, Zix is the input impedance, Zi, is the load
impedance, and both Zr and Zy are Thevenin equivalent impedances
looking into the network toward the source at interior or load interfaces,
respectively. See Figure 2.1.6. If the real parts of the impedances in
(5.1.1) are strictly positive, then lal=0 only when there is a conjugate
match at every interface, e.g. Zin=Zg*. Therefore, zero reflectance implies
a conjugate match at every interface in the network.

o] = (5.1.1)
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5.1.2 El Sections Matching Resistances

The objective is to design a two-element LC network that matches
a load resistance, Rz, to a source resistance, Ri. The network topology is
called an “el” section, and its design is a very simple but important
application of the 1+Q?2 series-parallel conversion method of Section 2.3.1.

Example 5.1.1. A 6+j0 ohm load impedance must be matched to 25+0
ohms at a single frequency. Problem: Design the two el sections that
produce this match. Solution: The steps and results are shown in Figure
5.1.1 (a) and (b), respectively. Equations (2.3.2) and (2.3.5) are repeated
for convenience:

X _Re
0= (5.1.2)
R/ -1 (5.1.3)
T T TEIX
-1Xi HX; 325 <= §§5 X %6
- I
(b)

Figure 5.1.1. El section matching: resistive load and source in Example 5.1.1.

For a real Q value, (5.1.3) shows that Rp>Rs, so Rp=25 and Rs=6, yielding
Q=1.7795. Series reactance Xz in Figure 5.1.1(a) is found by using (5.1.2);
Xo=Xg=QxRg, so X2=10.6771 ohms; the sign of the reactance is not
important at this step. Again, (5.1.2) yields X;=Xp=Rp/Q, so X1=14.0488
ohms.

The series-parallel equivalence shown in Figure 5.1.1(a) 1is
obtained with X; and Xy having the same sign: they are either both L’s or
both C’s. In order that the parallel-equivalent impedance be a real 25+j0
ohms, it is necessary to add a -X; reactance in parallel to tune out
(cancel) the +X;. The result, in Figure 5.1.1(b), shows the two possible
solutions: In the physical network, if X2 is an L then X1 is a C, and vice
versa. It is important to observe that

o Rp>Rs mandates that el section topology be oriented as
shown for matching a low resistance to a high resistance,
and vice versa, and

o The branch reactances in an el section that match
resistances must have opposite signs.

Also note that the reactances in ohms at a design frequency are readily

converted into inductive and capacitive element values using program
DENORM.
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5.1.3 El Sections Matching Impedances
The more general application for el sections is to match

impedances, one or both having a reactive component. An extension of
Example 5.1.1 illustrates the method.

Example 5.1.2. A Z,=6+j12 ochm load impedance must be matched to a
20-j10 ohm source at a single frequency. Problem: Design all el sections
that produce this match. Solution: Half the solutions to this problem are
shown in Figure 5.1.2. Leaving the load in series form requires that the

2,2 20-109 ='>—Jvzl’ .=’:==—,,___~:]"
oy
E,
ri>

L network 2, =6412Q
;
‘ (a)
e
= i%, +in2= X2 +1068 =10.68
i X, =1405 +14.05

. Xy ~ 132 ~22.68
ﬂD it . —19.58 1097

Xip SO 50
L r R:ﬂp 25 25
NS

Figure 5.1.2. El section matching complex load and source in Example 5.1.2.

(34

_W\V'
e

source impedance be converted to parallel form; 1+Q2 can be used to
obtain Rp=25 and Xp=-50 chms as shown in Figure 5.1.2. The first step
is to design an el network composed of X; and X3 that matches 6 ohms to
25 ohms; that step is shown in Example 5.1.1. The physical matching
network is X, and Xp 1n Figure 5.1.2; if X2 is inductive, as is the load, then
X9=10.6771=Xp+12, so Xp= ~1.3229 ohms (capacitive). It remains to find
what value of X; in parallel with -50 ohms will produce reactance
X1=-14.0488 ohms, i.e. ‘
1 1 i

X, " x, "0
The answer is X;= ~19.5387 ohms, so both X, and Xy, which compose the
matching network, turn out to be capacitive in this case.

A second solution is obtained when the signs of both X; and Xz are
reversed; the resulting answers are shown in Figure 5.1.2 also. Third
and fourth solutions can be obtained by leaving the source in series form
while converting the load to parallel form (Rp=30 and Xp=+15 ohms).
These solutions have been previously published [Cuthbert,1983:180].

(5.1.4)
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5.1.4 Pi and T Sections

Pi and T sections composed of three reactances can be designed by
creating two el sections in cascade. The easiest way to explain this is also
by example. The concept of a hypothetical transformation resistance and
its loaded Q is important.

Example 5.1.3. A 100+j0 ohm load impedance must be matched to 50+j0
ohms at a single frequency using a Pi section. Problem: Design all Pi
sections that produce this match using el sections in cascade. Solution:
The steps and results are shown in Figure 5.1.83 (a) through (h). The

;’j—jX‘,‘— —jXS'T‘g Qu=2: Qs=3:
55 jX3 R=10 X 3100 X;=25 X=30

L (b)x4=20 X=33.34.
3 X, +X X4 Xs . s X Xs
(C) (e) ®
TX %6 T ;gx6 ; ;; X, X

—X4

SEER s

Figure 5.1.3. Networks matching 50 to 100 ochms in Example 5.1.3.

design begins at the 100-ohm load resistor by designing an el section that
matches to a transformation resistance, Rr. Because the matching
element next to the load is in parallel, the hypothetical resistance Rr is in
series with reactance Xs. Therefore, (5.1.3) shows that Rr<100 is
required. However, the el section composed of X4 and X3 is oriented so
that Rr<50 is also required. The latter constraint is dominant and
determines the rms current in X4 and Xs. Given a power P in watts, the
associated rms current is

1=k, - | (5.1.5)

Current It cannot be less than 0.1414 amperes/watt; a choice of R1=10
causes 0.3162 amperes/watt. Parameter Ry also controls the transfer
phase [Cuthbert,1983:174]. Another consequence of the choice for Ry is
the resulting element values as follows.

The resistance ratio 100/10 in (5.1.3) requires Qs=3, so that
X6=333 and X5=30, ignoring signs. Similarly, Q34=2, so that X,=20 and
X3=25 ohms. As shown in the el section design in Example 5.1.1, each
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pair of reactances must have opposite signs. If all the X; values are
defined positive, then the various combinations produce the Pi networks
in Figure 5.1.3(c)-(h) that solve the problem. They are lowpass, highpass,
and bandpass topologies of degree N=2 or N=4 with assorted NZ and NIN
transmission zeros at dec and infinity, respectively. A spreadsheet and its
built-in optimizer is an effective means for imposing user constraints.

Design of T networks is accomplished in dual fashion. In that case
the transformation resistance, Rt, is a parallel resistance that controls
the voltage at the middle node as well as the transfer phase and all
element values. As a result of these examples, it should be observed that
all the branch reactances in any ladder network can be quantified by a
sequence of transformation resistances or their signed transformation @
values. Even though these methods relate only to a single frequency,
transformation Q’s are the basis of a wideband impedance matching
technique [Abrie,1985:79].

5.1.5 Cascade Transmission Lines

Figure 5.1.4 shows a CASTL terminated by load impedance
Z2=R2+jX2 and with input impedance Z;=R1+jX; at a single frequency. It

z,=z;
=% ) z=% 0-90) 1
Z,
P1 P2 l

Figure 5.1.4. A terminated cascade transmission line.

mterfaces with source impedance Zs at port 1, and an impedance match
implies the conjugate condition Z1=Zs*. The input impedance is related
to the load, real characteristic impedance, and electrical length by
Z, + yZ, _
Z, ZOZO Tz, y=tand. (5.1.6)
Relating the real and imaginary parts of (5.1.6) and some algebra
enable Zy and 0 to be expressed in terms of Z; and Za:

Rl IZz |2 - Rzlzllz "
Zy= T R-R (5.1.7)
and
- Zo(R1 - Rz)
6= tan '[——-—“—RIXZ +R2X,)' (5.1.8)

Clearly, a solution can exist only when R2#R: and the square root in
(5.1.7) exists. Both of these equations are easily programmed
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[Cuthbert,1983:185], and many articles with various design aids based on
these equations have been published.

For completeness, the reflection form for describing a CASTL
should be noted:

| po=pe’™ (5.1.9)
where p 1s the simple reflection coefficient wrt Zo; see (2.1.10). One thing
(5.1.9) shows is that the polar angle on a Smith chart is twice the
electrical length of the CASTL.

The more important situation is when these CASTL’'s are
embedded in an LC ladder network; then their ABCD parameters and
equivalent Pi or T networks are of more interest, as described in Sections
5.4.3 and 5.4.4.

5.2 Analytic Gain-Bandwidth Theory

The first extensive analytical treatment of the gain-bandwidth
problem [Fano] was followed by many other developments, especially its
simplification [Levy,1964], which is reviewed here. The situation is
shown in Figure 5.2.1, which includes both a complex source and a

Zo—— —
N Lossless
Eq P> Network

Figure 5.2.1. Fano broadband matching based on lowpass prototype data.

complex load. The practical bandpass cases only deal with a single
dissipative load resonator and three kinds of source impedance: (1) a
resistance, (2) a single dissipative resonator, or (3) an ideal voltage or
current source having no resistance.

It is very important to have a clear understanding of broadband
matching limitations in terms of simple @ parameters and network
degree, N. Those limitations are described first, followed by the explicit
equations for the element values which make comprehensive design
programs such as ALLCHEBY possible. Examples are included, and
references for modeling measured impedance versus frequency as a single
resonator are discussed.

5.2.1 Gain-Bandwidth Limitation

The lossless matching network in Figure 5.2.1 is assumed to be
derived from its lowpass prototype network, as described in Section 2.4.2.
The load impedance, Z1, usually is considered to be the first resonator
(L1, Ci1, 1). Therefore, the matching network usually includes the second
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resonator, composed of Lgz-C2. Whether series or parallel, the load
resonator has a loaded Q, Qi, and the input reflection coefficient of the
matching network is a function of Q. The reflection return loss is
defined by (2.1.9) and (2.1.10), using p in place of I These parameters
are the ingredients in Fano’s gain-bandwidth limitation:
Lilp| " der = =
JLrlpl"do =
The natural logarithm, Ln, differs from Logio by just the constant 2.3026,
so what (5.2.1) requires is that the area under the return-loss curve over
all frequencies is a simple constant. (Fano originally stated the problem
in terms of lowpass networks. In Figure 4.4.3, Qi=gixgo when w¢=1,
according to (2.3.2)).
By the theory of functions, continuous conjugate matching over a
finite pass band is impossible {Carlin,1998:384]. Figure 5.2.2 shows the
gain-bandwidth limitation: there can be low reflection and narrow

(5.2.1)
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Figure 5.2.2, Fano’s gain-bandwidth limitation for single matching.

bandwidth or wider bandwidth and greater reflection. The greater the
loaded Q, the more drastic the compromise. When the ripples in Figure
5.2.2 result from the Chebyshev function, a network of higher degree, N,
will have less ripple with lower reflection. It is useful to allow N— o, so
that there is constant reflection in the passband, e.g. l p [ max as illustrated
in Figure 5.2.3. Then the integral in (5.2.1) becomes band limited so that
the limits of integration can be from o1 to w2. The result for the single-
match case is
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Min lplm = N-owo, : (5.2.2)
where decrement, 8, is defined as
Ouw
8= (6.2.3)
0,
1
1pl
ol oy e —
1 1
0 1 i \;_
w

Figure 5.2.3. Limiting case of passband reflection as degree N—w.

5.2.2 The Single-Match Minimization Problem

Of course N cannot be infinite, as in (5.2.2), so the question is how
| p | max varies with & for a finite bandpass network of degree 2N, where N
is the number of resonators. Figure 5.2.4 shows the lowpass transducer
function in (4.2.1), where the equal-ripple characteristic function

I H(w )|2 Minimize
1+& +&°
1+ & : |

1 ! )
0 1

Figure 5.2.4. Lowpass equal-ripple (Chebyshev) transducer function.

| R(0) | 2=¢2T2(0) and T(w) is a Chebyshev polynomial of the first kind.
The flat loss that is always associated with broadband matching is 1+£2;
see (4.2.1). The characteristic function is related to the input reflection
coefficient by (4.4.1), so minimization of transducer function |H|2 is
equivalent to minimization of lp | 2 a5 well. See [Cuthbert,1983:194} for
details.

Fortunately, there are explicit expressions for the coordinates of
the poles of p(w) in the Laplace s plane for the Chebyshev case; they are
on an ellipse having its major axis centered on the jo axis. Any
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particular ellipse has two defining variables, say ¢ and b, that appear as
arguments of hyperbolic sines (sinh z). Location of the zeros of p(w) is
arbitrary, but they are usually placed in the LHP in order to maximize
Fano’s integral in (5.2.1) [Mellor:67], [Van der Walt]. The two degrees of
freedom in ¢ and b allow two constraints; for the single-match case they
are (1) a given loaded Qv, and (2) minimization of the maximum ripple as
in Figure 5.2.4. The result for the single-match case (resistive source) is
that constants a and b are determined in the process of minimizing
| 0§ max. Flat-loss parameter £ in (4.2.1) is also determined.

5.2.3 Single-Match Optimal Results

The bottom line on the single-match case is shown in Figure 5.2.5.
The abscissa is the decrement 5=Qrw/Qi. The ordinates are |p|max on
the right and the equivalent standing-wave ratio (SWR) on the lefi.

20.0 = ; 0.9
The Load R & \ ' ,
g4 ARE N =1 a.85
RN .
\ \\ : : :i 08
70 \ \ ] 2@——— A r—A 1-Element Matching Network ' 0'755
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Figure 5.2.5. Fano's minimum possible reflection for the single match case.

Recall that N=1 is just the single RLC load resonator. So for a resistive
source connected directly to that load without any matching network,
N=1, the top line shows how lp | max decreases as & increases. The lowest
line is the N— « case, which corresponds to (5.2.2). The significant trend
is shown by the N=2, 3, 4, and 5 loci: for any given 8=Qgw/QL there is a
marked reduction inlplmax for just one matching element (N=2), and a
decreasing improvement as N increases. There is seldom any reason to
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include more than four resonators (N<5) in a single-match broadband
matching network.

This important conclusion applies for bandpass situations, where
N is the number of resonators (including the load). It also applies for the
lowpass situations, where N is the number of elements including the load
and Qew=1. In both cases, the source resistance is a dependent variable
which is not unity because of flat loss. The value other than unity is
easily accounted for in bandpass network design (Norton transformations
in Section 2.4.4). It is useful to see how analytic theory has shaped the
input reflection-coefficient frequency function; see Figure 2.2.7 for the
N=3 lowpass response.

5.2.4 Chebyshev Network Element Values

In addition to knowing the pole locations for Chebyshev filters in
terms of parameters a and b in Section 5.2.2, several investigators
guessed or derived a recursive expression for the lowpass prototype
element values [Green]. In the lowpass prototype, Qaw=1 and load
resistance go=1, so the load decrement in (5.2.3) is simply §:=1/g1, where
81=8 by (5.2.3). Then,

sind T
B = Ginha —simhb” © T 2N ©.2.4)
asinf(2r ~ 1)6] xsin|(2r + 1)0]/¢,
8= 3 . 12 . 2 ] . > (5.2.5)
sinh” g + sinh’b + sin (2r6) — 2 sinha x sinhb x cos(2r0)
forr=1, 2, ... ,N-1, and
2sinf
Sy = (5.2.6)

g, {sinha + sinhb)

These recursion equations define the elements for the prototype
lowpass networks in Figure 4.4.3. In addition to degree N, constants ¢
and b are always known, as in Sections 5.2.2 and 5.2.5, so that gi1=1/6,
will satisfy (5.2.4). For r=1, g1 appears in the numerator of (5.2.5) to
determine gz, etc. The last value, gn+1 in (5.2.6), is the dependent source
resistance or conductance. These equations are the basis for program
ALLCHEBY. '

For a single-match example, see Table 4.4.1 in Section 4.4.2.
Element values for the classical single-match case have been plotted
versus decrement & [Matthaei:126-9]. From that plot or program
ALLCHEBY, it is readily observed that for 0.1<81<2.0 corresponding to
Figure 5.2.5, the lowpass element values are contained within the range
0.9<gi<12 for N<5. This fact is applied in GRABIM, Section 5.4.4.

5.2.5 Other Terminal Impedances

There are several other important cases of load and source
impedances, and the network element values differ only by different
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choices of constants @ and b in (5.2.4)-(5.2.6). Doubly-terminated
Chebyshev filters have resistive terminations, so ¢ and b are determined
by the specified ripple and flat loss. In singly-terminated Chebyshev
filters (ideal source), a=b, and the one degree of freedom is determined by
(1) a given Qi, or (2) a given passband ripple.

For the double-match case, both Qi and Qs are specified (Figure
4.4.3), so there is no freedom to minimize |plmax as 1n Section 5.2.2.
Constants ¢ and b are dependent, as are the ripple and flat loss, because
the source decrement, én, constrains (5.2.6):

QBW 1
Ev8na

Element equations (5.2.4)-(5.2.6) correspond to elements from load to
source. However, it is required that &w>8: [Cuthbert,1983:201-2].
Therefore, when Qs>Qu, element numbering is reversed, with the source
resistance equal to go=1 ohm and numbering increasing toward the load.
The response is unaffected, because the reciprocity theorem also is valid
for doubly terminated networks.

Strangely, there are a few double-match cases where the single-
match relationships result in a lower maximum loss than when using the
double-match relationships. In that event, the given Qg must actually be
increased, storing more energy and challenging common intuition. The
required double-match source @ must be obtained with a “pad” on the
source resonator as shown in Figure 5.2.6. Here, Qz= Qs.

? i?%cT% ﬁ?ﬁ?

IQ@(oo Q4

Qs

Figure 5.2.6. In some cases, a capacitive source pad minimizes reflection.

(5.2.7)

Fxample 5.2.1. A double-match problem specifies Q1.=3 and Qs=1.5 to be
matched over a 40% bandwidth using a three-resonator matching
network. Problem: Design the network, including any source resonator
pad reactances. Solution: The ALLCHEBY program provides the data in
Table 5.2.1.
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Table 5.2.1. ALLCHEBY Data for QL=3, Qs=1.5 Over 40% BW.

Is this a Matching or a Filter (QL=0=Q8S) network ( ,F)? M
N,QLoad,%BW =? 4,3 40
Is Source Loaded Q Optimal, Given, or Infinite ( ,G,[)? G
Q Source =? 1.5
MAXIMUM INSERTION LOSS FOR INFINITE N IS 0.0232 dB
THIS INSERTION LOSS FROM 0.0402 TO 0.0681 dB
THIS dB FLAT LOSS = 0.0402
THIS dB RIPPLE = 0.0279
SWR FROM 1.2124 TO 1.2850
RETURN LOSS FROM 20.3555 TO 18.0811 dB
Lseror Cpar G(1)=1.2000 Q(1)= 3.0000
Cparor Lser G(2)=1.1322 Q(2)= 2.8306
Lser or Cpar G(3)=1.6173 Q(3)= 4.0431
Cparor Lser G{(4)=0.5180 Q(4)= 1.2949
Ohms or Mhos G(5)=1.2850 Q(5)= 1.6639
***%% O3( 4 ) includes pad to increase given terminal @ to Q( 5 ) *****

When the last line in Table 5.2.1 occurs, three steps are required:

1 0

. Find C,=—=—%,
y XK Rs

2. FindC,=C,-C,,
1 0

Cy = X" —f , and (5.2.8)
3. Notethat Qy,, 20s:
QNH = Rg 2 CN N

Using the above data, C;=1.1673, C4=1.2949, and Cp=0.1276 farads.

In each of the cases in this section, N— « can be considered just as
it 1s in (5.2.2) for the single-match case. As noted in Section 4.4.3, zero
ripple and flat transducer loss cannot be obtained in the double-match
case, no matter how large N. In the singly-terminated cases, the power
ripple represents the ripple in input resistance or conductance; see
Section 2.1.5. That ripple cannot approach zero as N—» co.

5.2.6 Measured Loaded Q

In those few cases where analytic gain-bandwidth theory can be
applied to practical situations, it is necessary to measure the loaded Q of
a terminating impedance. Accurate measurements at many frequency
samples are readily obtained using an automatic network analyzer.
Three references are discussed briefly to suggest effective ways to process
those data, and they all are based on the circular image of resonator
impedance versus frequency on a Smith chart.
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The first method utilizes a printed image of the network analyzer's
polar display of a resonator located at the end of a transmission line
[Kajfez]. Dimensions and angles are measured, based on consideration of
a single resonance with possibly an impedance in series. The frequencies
of two different points on the circular image and its crossover points (zero
and poles) are required. There is no data averaging to minimize error
(other than that built into the analyzer).

The second method is also based on examining the circular image
on a Smith chart, in this case at the Q=1 intercepts [Weiss]. The article
is intended for measurement of high Q resonators, such as small
antennas on aircraft. It does not account for incidental impedance and
does not average data to minimize error.

The third method for measuring the loaded Q of a resonator
applies for both high and low values of Q [Drozd]. It does average data
and does not require reading information from a Smith chart, which is
tedious and can lead to inaccurate results. The method is based on the
relation of stored electric and magnetic energy to the slope of reactance
(or susceptance) versus frequency. Because resonator reactance versus
frequency is fairly linear in the vicinity of resonance, S parameter data
closely-spaced in frequency can be used to estimate the reactance
derivative (slope) by linear regression, which averages the data. The
article includes a comparison with other methods.

The major limitation of any method of measuring loaded Q based
on simple lowpass RC or bandpass RL.C impedance behavior is that it
does not fit the lumped-element model in many situations. For example,
it is well known that the input impedance of many transistors can be
modeled as a series RC circuit and the output impedance as a parallel RC
circuit. One example where this is only half true is in the data for a 5
GHz FET [Ha:164]. The real-frequency methods in the following sections
enable matching arbitrary impedance behavior.

5.3 Real-Frequency Technigue

The real-frequency technique (RFT) was introduced in 1977 by
H. J. Carlin and extended by his students and other researchers
[Carlin,1977,1998]. The single-match problem is shown in Figure 5.3.1
when Zs=Rg+j0. The load can be considered a one-port network with
unknown characteristics other than impedance data tabulated at discrete
passband frequencies, as shown in Figure 5.3.1.

The power transfer through the lossless matching network can be
determined from either port, because reflectance | pin | =] pql. The
modulus of generalized reflection coefficient pg, defined by (2.1.8),
depends on back impedance Zq=Rq+jXq as well as load impedance Zy. The
objective is to minimize the reflectance in the pass band.
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Figure 5.3.1. Discrete impedance data are used in the real-frequency method.

The RFT assumes a parameterized piece-wise linear function to
represent Rq(e) over all passband and stopband frequencies, calculates
the Xy4(w) function (in similar form) dictated by the Hilbert transiorm,
and optimizes the parameters of Ry to obtain a desired transducer loss
over the passband. Next, a second optimization determines a rational
resistance function, which is then converted into a rational function of Zq
that can be synthesized.

The need for numerical optimization as opposed to an analytical
approach is discussed; an overview of Carlin’s design steps is presented;
and the difficulties, pitfalls, and advantages of the technique are
mentioned.

A third approach has been proposed, treating the single-match
broadband problem as a minimum-distance problem in the space of
bounded functions. Network realizability is confirmed by testing a
combination of Toeplitz and Hankel matrices for positive definiteness.
No examples have been published so far [Helton], [Carlin,1992:497),
[Carlin,1998:385,421].

5.3.1 Non-Analytic Real-Frequency Data

Single-match gain-bandwidth limitations (Jowpass CR or LR load
with NIN=1) pose only one constraint, a single nonlinear equation that
can be solved to relate the a and b variables introduced in Section 5.2.2.
An LCR lowpass load with two transmission zeros at infinity (NIN=2)
introduces two nonlinear constraints with a more difficult solution
[Chen). No complete analytic solutions have been published for more
complicated loads. In the real-frequency situation arising from a
measured load, there is no way to know the number or nature of the
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nonlinear constraints, and an appropriate transfer function cannot be
prescribed.

When one or both terminations are not pure resistances, doubly-
terminated filter transfer functions can no longer provide optimum
properties; e.g., in the Chebyshev case, minimum passband loss and
maximum stopband selectivity are not optimal. There is no known
method for prescribing the best transfer function for an arbitrary
terminating impedance function. However, numerical methods can
directly optimize the passband minimax loss without wasting matching
network elements on obtaining an inappropriate transfer function. At
the same time, numerical methods can guarantee a desirable topology,
namely a bandpass ladder network without the limitations of the
lowpass-to-bandpass transformation. Therefore, numerical methods yield
better results than the analytic solution [Carlin, 1998].

5.3.2 Approximating the Network Resistance Function

Of several alternatives, Carlin introduced a piece-wise linear
approximation for resistance function Rq, the real part of impedance Z4 in
Figure 5.3.1. Figure 5.3.2 shows such a function, where the parameters
for optimization are ro, r1, and r2. Frequencies for the joints are

25 T T
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Figure 5.3.2. A piecewise linear approximation of transducer resistance.

arbitrarily chosen, and the function is band limited; ie. Rg=0 for
stopband frequencies, to provide finite integration limits in the Hilbert
transform (2.6.11). For a given set of coefficients, rj, resistance Rq(0i) can
be obtained by the piece-wise approximation, and Xq(w) is easily obtained
by the Hilbert transform for any frequency, o; [Cuthbert,1983:220],
[Carlin,1998:126-132]. See Section 2.6.5.
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In general, Rq(w) is expanded as a linear combination of even basis
functions with coefficients, rx, to be determined, and X4(w) is a linear
combination of odd basis functions with the same coefficients [Carlin,
1992:498]. These linear combinations are

()= 2 na,(@),
Xq(a))= k"z:orkbk(a))'

The ax(w) basis functions that appear in Figure 5.3.1 are linear ramp
segments, and the related br(w) basis functions result from simplification
of the Hilbert transform (2.6.11) by piece-wise linearizing the integrand
numerator.

A resistance function of a resistively-terminated two-port ladder
network, Rq, having all its transmission zeros at infinity and/or dc, must
be a rational, even function of frequency [Carlin, 1983:21]:

(5.3.1)

Aoa)lm
R(w) = , m<n. 5.3.2
(@) B, + B+ 1" (5.3.2)

The original RFT first obtained the piece-wise linear approximation by
optimizing the transducer gain function, (2.1.2), using the r; in Figure
5.3.1 as variables. That was followed by a second optimization to adjust
the coefficients in (5.3.2) to fit the optimal piece-wise representation of
Rqy. Finding good initial values for optimization variables is usually a
separate problem; in the piece-wise representation for Ry it is possible to
assume a conjugate match at the load port in Figure 5.3.1, which
provides initial values of the r; variables that may lead to satisfactory
convergence [Carlin,1977].

Another way to approximate Rg(®w) so that parameters can be
adjusted for optimal transducer gain is the Wiener-Lee transforms
[Carlin,1992]). This method approximates Zq(w) by a truncated Fourier
series in the form of (5.3.1), where the resistance is the weighted sum of
cosine basis functions, ax, and the reactance similarly employs only sine
functions, bx. This technique avoids the singularities that occur in the
line segment representation, which can impede gain optimization. A
rectangular gain objective can be approximated by an integral in
continuous frequency (as opposed to discrete samples) by using the fast
Fourier transform algorithm. Starting values for gain optimization are
obtained by wusing a simple application of the piece-wise linear
approximation in Figure 5.3.2. Although there are some difficult details,
a potential outcome of the Wiener-Lee transform method meets a
fundamental! need: finding a good approximation to the maximum-
possible gain for N— o, comparable to Section 5.2.5 for the analytic
method.
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5.3.3 Synthesis of a Resistance Function

The remaining RFT step is to synthesize a ladder network from a
known resistance function (5.3.2). This is most easily accomplished by
the Gewertz procedure [Carlin,1998:334], [Cuthbert,1983:58] which
produces an RLC impedance

N(s)

Zq(s) = )

Briefly, with the substitution @2 = —s2 in (5.3.2), the LHP roots of the
denominator form the polynomial D(s). Coefficients of polynomial N(s)
are found by the Gewertz procedure as the solution of a system of linear
equations involving the other coefficients already obtained
{Cuthbert,1983:58].

In order to realize the LC matching ladder network using
continued-fraction expansion, the open-circuit impedance parameter, zi1,
must be extracted from the known RLC impedance Z4(s) in (5.3.3). See
[Carlin,1998:221,279], [Cuthbert,1983:60-61]. In this approach, there is
no guarantee that all matching network elements will be positive.

5.3.4 Double-Matching Using the RFT

The double-matching problem is shown in Figure 5.2.1, where
Zs=Rs+jXs is obtained from tabulated data at the same frequencies as for
the load impedance. It is shown in (2.1.8) that for lossless two-port
networks the magnitude of the reflectance is constant at any interface,
especially at the input and output ports. There is a relative phase-angle
factor between the output and input generalized reflection coefficients,
say e, implicitly related to Zq(®), and angle ¢ must be known in order to
compute the transducer power gain.

A complication arises because Zg(w) is defined as the back
impedance at the output port when Xs=0. That is a necessary restriction
in order that the network can be realized from Z4(s) according to the
preceding section. See Figure 5.3.1; at any frequency and Zs=1+j0,

z, -1 zZ,-Z
'D‘"_Z,.n+1_e

q
Z,+Z .

Then it can be shown [Carlin, 1983} that the transducer power gain, T, for

Figure 5.2.1 is
2 2
: P (1—|p5| )(1— Pin )
@J=7¢ — (5.3.5)
s L= pg

where ps is the reflection coefficient of the actual source impedance wrt 1
ohm:

(5.3.3)

i

. (5.3.4)

Z,-1
A

(5.3.6)
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The phase angle, ¢ in (5.3.4), is the transfer phase angle when
there is a purely resistive match at the load port. It can be obtained from
the resistance function in (5.3.2). It has been shown [Carlin,1983] that

Hw) = —mz - 2arg D(w) , (5.3.7)
where m is from (5.3.2) and D(o) is from (5.3.3).

A third nonlinear optimization is thus required, because the
passband gain function involves ¢ in (5.3.4). Unfortunately, this last
optimization includes the Gewertz procedure within the iterative process
[Yarman,1990:214]. Otherwise, the double-match procedure is similar to
the single-match design, but with another layer of complication and
potential ill-conditioning.

5.3.5 Double-Matching Using Brune Functions

A notable improvement in real-frequency methods avoids explicit
factorization of polynomials and repeated use of the Gewertz procedure
with its solution of a system of linear equations. The major optimization
step adjusts the poles of the impedance function Zq(s) to obtain a
satisfactory transducer gain function. Not only is Zq(s) positive definite
(guaranteeing all positive element values), but the broadband match
performance is known before the network is realized [Yarman,1990],
[Fettweis].

The improvement is obtained by expressing the back impedance,
Zq(s) in Figure 5.3.1 (Xs=0), as a Brune function:

n C
Z(s) =C, + Z L
j=1

5=,
The coefficients, Cj, are computed in terms of the poles, sj, of Zq(s), but
their formula guarantees that Z(s) will be positive definite, another
consequence of the Hilbert transform [Forster]. Having a guess for
values s{=cjHw;, j=1 to n, immediately provides a way to compute Zq(jo;),
where each o; is a passband frequency sample for evaluating the
transducer gain function. Therefore, the success of the optimization is
known with the assurance that a real non-negative network can be found.
Note that the degree of the ladder network, n, must be chosen arbitrarily.

The Brune function in (5.3.8) is similar to a partial fraction
expansion, and a standard algorithm can collapse that summation into a
rational form, as in (5.3.3), for network realization. The use of Brune
functions reduces matching to a classical optimization problem having
improved numerical stability. It also provides explicit expressions for the
exact partial derivatives required by the optimization algorithm.
Unfortunately, there is the usual problem of finding starting values of the
s-plane poles, and Carlin’s RFT for single matching is the recommended
way to obtain them. Unfortunately, that process requires root finding
[Yarman,1990:217].

, =0 + j@. (5.3.8)
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5.3.6 Double-Matching Active Devices

Microwave amplifiers often consist of several transistors separated
by matching networks as well as the terminal networks at both ends.
The design of any internal network is a double-matching problem.
Because the transistors are usually characterized by scattering
parameters rather than impedance, a design scheme has been developed
[Carlin, 1998:433] that differs from that in Sections 5.3.4 and 5.3.5.

Briefly, transducer power gain (5.3.5) is restated in terms of unit-
normalized reflection coefficients similar to (5.3.6).  Specifically, the
input scattering parameter is

Z, -1 h(s) hy+hs+--+hs"

S = Z,+1 g(s) g,+gs+—+gs"
Assuming a bandpass matching network, a guess for all the numerator
coefficients, h;, enables construction of the polynomial g(s)xg(-s).
Spectral factorization (i.e., find all the LHP plane roots) provides a
Hurwitz g(s); therefore, g(s) is obtained in a way that guarantees a
matching network having all positive elements. Unfortunately, the
optimization of the transducer power gain uses the numerator coefficients
in (5.3.9) as variables, so the iteration may be ill-conditioned as well as
having root-finding in each iteration. Also, the maximum possible gain
factor must be guessed by cut-and-try. See [Yarman,1982].

This so-called “simplified” RFT has been extended to incorporate
transistor stability and input/out matching network design, all occurring
concurrently in the optimization [Jung].

(5.3.9)

5.4 Introduction to GRABIM

The grid approach to broadband impedance matching (GRABIM) is
much easier to understand and utilize than the RFT in Section 5.3. This
section recalls the trends, observed in this and the preceding chapter,
which suggest GRABIM. An overview of GRABIM concepts indicates how
and why this new broadband matching method i1s so effective. This
section emphasizes four innovations:

1. All reflection functions versus element parameters are known
unimodal, monotonic, or similar shapes that compose the worst-
case envelope over frequency,

2. The reflection functions are well-conditioned because of
frequency and impedance scaling and transformations that
control equivalent ladder elements for cascade transmission
lines,

3. Grid searches over large, medium, and small hypercubes
(lattices) that are repositioned in the solution space
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approximately locate the likely global minimax solution while
avolding local anomalies in the envelope surface, and

4. The final minimax-constrained gradient optimization precisely
locates the likely global solution and prunes the topology to
produce a reduced-degree full-rank equalizer.

5.4.1 Thesis

The real-frequency technique (RFT) has evolved continually since
its introduction more than 20 years ago. The ability to deal directly with
terminal impedances known at discrete frequencies 1s far more realistic
than hoping to find correspondences between a very few ideal load
impedance models and given termination data. However, the ability to
make good use of the RFT depends strongly on the designer’s thorough
background in academic circuit theory. That background is desirable and
may be sufficient, but it is not necessary.

The RFT employs several uncertain optimization procedures and
utilizes the mathematics of network synthesis throughout. Synthesis of
filters by iterated analysis, Section 4.5, is far less complicated and
depends on just one highly-structured numerical optimization — it is a big
step forward [Sussman-Fort,1991]. Iterated analysis also depends on
knowing the frequencies where passband loss must be zero, and it is
shown in Section 4.2 that any Chebyshev equal-ripple filter response is
completely determined by the locations of its transmission zeros. For
bandpass networks, there still is the uncertainty of finding reliable
starting values for the optimization variables.

Section 4.4 shows that, for Chebyshev equal-ripple passband
response, applying simple constraints to network terminations forces the
passband to have flat loss at the valleys to maintain passband width.
The ripple loss peaks still can be minimized when there is one load
constraint, but the peak loss is strictly dependent when a second
constraint is added, e.g. the double-match problem. However, Figures
4.4.4 and 4.4.5 show how the input reflectance at each frequency behaves
as a function of a typical network branch value. That analytic solution
brings all the valley frequency functions through the same valley flat loss
(Figure 4.4.4) and all the peak frequency functions through the same
peak loss (Figure 4.4.5) when plotted versus branch value. Filter transfer
functions, like Chebyshev equal ripple, are not optimal for broadband
matching.

It is possible to sample enough passband frequencies for a
structured optimization to minimize the maximum loss over all the pass
band, thus avoiding the limitation of a particular transfer function (as
does the RFT). But GRABIM solves the problem of starting values for
variables while avoiding the mathematics of network synthesis and
uncertain optimization. It must be emphasized that GRABIM is not an
all-out application of optimization per se, e.g. [Kintscher]. GRABIM is a
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reasoned approach for getting the best possible broadband matching
solution with the least possible human effort. The power of the personal
computer is a key ingredient in this approach, as was argued in behalf of
iterated analysis where its speed of operation allowed simplicity
[Orchard].

The following sections define broadband matching as a highly
structured optimization problem, based on frequency-sampled
terminating impedances which may have a number of different values at
each frequency. Ladder networks are considered as solutions, and their
automatic generation is introduced. Then the grid search locates the
neighborhood of the global minimum, and the minimax-constrained
optimization removes excess network elements. Reasons why these
techniques work so well and how they can be made efficient accompany
their exposition. Surplus matching network branches are mentioned in
the context of the surplus elements and degrees of freedom encountered
in direct-coupled filters, Section 3.4.4.

5.4.2 Overview

Broadband matching requires design of a matching network
(equalizer) placed between a complex source and a complex load, as
shown in Figure 5.4.1. The matching network may contain any ladder

1 2
N Zs LOSSLESS T
MATCHING Z,
Eg NETWORK
r __f.l._l

Figure 5.4.1. Broadband matching network terminations and impedances.

arrangement of inductors, capacitors, short- or open-circuit transmission-
line stubs, cascaded transmission lines, and an ideal transformer.

The terminal impedance data are tabulated versus frequency as
illustrated in Table 5.4.1. The data are normalized to one rad/s and 1
ohm, a necessity for GRABIM. (As explained below, it is unimpotant
which passband frequency corresponds to 1 rad/s, except when the
matching network includes open- or short-circuit stubs.) The “Goal” or
target data are the maximum desired network insertion loss at each
frequency. These data are usually obtained by an S-parameter test set.
Program S11TOZ.EXE is a convenient way to convert S-parameters in
numeric/degree ASCII format to impedances normalized to one ohm.

Although Table 5.4.1 shows only a single impedance per frequency
for a termination, there may be a cluster of discrete impedance data
defining a neighborhood at each frequency. Impedance neighborhoods
occur in beam-steered antenna arrays and mobile antennas, and they
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arise in transistor impedance uncertainty because of either lot variation
or operation into saturation.

Table 5.4.1. Measured Impedance Data for Source and Load.

' @ Goall I R X, 1 1 Ry X
13 0 1 1059016 0.71680 | | 0.71313 -0.45230 |
14 0 | 1071910 0.74944 | ! 0.56081 -0.49629 '
50 ! 10.80000 0.77500 | 10.41945 -0.49347 |
¢ .6 0 1 10.85207 0.80503 | 10.29915 -0.45789 |
{7 0 | 10.88688 0.84174 | | 0.20274 -0.40204 |
.8 0 ! 1091103 088470 |  !0.12909 -0.33530 '
1.9 01 1092837 093288 1 10.07539 -0.26403 |
' 1.0 1 1094118 0.98529 | ,0.03846 -0.19231 |

C o e e

As presented in Section 2.1.4, the power transfer in Figure 5.4.1 is
described by

P 2 2 . '
T= %)as=1—|p1| =1-|p, (5.4.1)
where the generalized reflection coefficients are
ARY A zZ,-Z,
=1 775 =2 "L (5_ 4.2)

p'=Zl+ZS’ pz:ZZ+ZL'
These coefficients are defined wrt fixed impedance data, i.e. Zs and Z.
Note that |p2| in (5.4.1) would be unchanged if pz were defined wrt Zs
instead. Transducer power gain in terms of the ABCD parameters of the
two-port network in Figure 5.4.1 is [Frickey]

e pL/ 4R.R,
Fes (4R, -Cq +DR,) +(B+Cp+ DX, +aX,) (5.4.3)
a=(XsR, + X,R;), p=(RR, - X,X,),

where A, B, C, and D are real numbers (the j operator is factored from B
and C). The range of T is from O (worst) to 1.0 (best). It is efficient to
evaluate T in (5.4.3), and then to use (5.4.1) to obhtain | p| .

The objective of broadband matching is

Minimize lplmax over vector v (5.4.4)

subject to the inequality constraints
pl.(v)slp(v, w‘.,D,.)lslplm , i=ltom. (5.4.5)
There are m sampled frequency points in (5.4.4), e.g. m=8 as in Table

5.4.1. Tor each of the sampled frequencies, i, there is at least one
associated data subset, D), which contains the goal, RL, X1, Rs, and Xs
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values for each frequency. The column vector v contains all the branch
variables of the matching network?, i.e., values of L, C, Zo, 00, and t2:

v=(v1,v2,---,vj,~~,vn)r. (5.4.6)

(A candidate network could have the PiCPiL topology in Figure 5.5.2, for
example.) For a candidate network topology with assigned element
values in v, there is a reflection magnitude function (reflectance), lp(w) |,
that takes on values p; at corresponding frequencies, ®i. The constraints
in (5.4.5) require each pi(v) to be less than |p|max by varying the n
network element values 1n vector v, while (5.4.4) requires Iplmax to be
made as small as possible. This is a statement of a minimax problem
(minimize the maximum). From the iterated analysis method in Section
4.5.3, it is necessary to have m>(n+1) frequency samples spread over the
given passband.

To further illustrate (5.4.5), consider the graphs of the eight pi(vs)
functions in Figure 5.4.2, and note that they are particularly well
behaved (benign). The numbered frequencies correspond to those in
Table 5.4.1 and are labeled by their respective curves. In this case, the
minimum | p | max ~ 0.5 and vs ~ 0.72 is optimal. Notice that different
segments of the p;i constraint functions constitute the worst-case envelope
as only vs is varied. A closer view of the minimum lp(max and the p;
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Figure 5.4.2. Typical reflectance functions versus a series branch inductance.

values at the eight frequencies is shown in Figure 5.4.3. Three of the
eight pi constraint functions in (5.4.5) are not binding constraints at the

2 The reader is cautioned against confusing lower-case italized v, v, with a Greek letter. The
difference in this letter between the equations and the text is unfortunate but unavoidable.
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optimum value of vs; i.e., they are more than satisfied (not “active”,
because their reflectances are less than the maximum at optimal v).
(Figures 5.4.2 and 5.4.3 show data produced by Example 5.6.1.)

08 1

0.75 NN ;

Optlmal
07 Neo=1.0 Inductance
0.65
At Optimal Inductance:
06 4 Sample R/S Rho Magnitude
1 3 0.49837 Binding
4 0.55 2 4 0.49789 Binding
2 35 0.49837 Binding
& 097 4 6 0.47159
& .
= 045 5 7 0.48263
g Y. P
98 6 .8 0.49838 Binding
8 04 7 9 0.44226
% 8 1 0.49838 Binding
~ 0.35 +
0.3 ' ot A N
0.5 0.7 0.8 0.9 1

Branch 5 Inductance (henrysy———>
Figure 5.4.3. Closeup of binding and nonbinding reflectance functions.

A candidate ladder network having n variables is selected. Then,
an approximate global minimax solution is obtained by testing a
sequence of discrete combinations of all elements of v, followed by a
strongly convergent minimax solution that obtains the global minimum
and discards (prunes) branches not involved in the solution. It is
important to justify the benign behavior of the p; curves shown in Figure
5.4.2, so the effect on pi(uvi) of each type of variable allowed in the ladder
network is described. Then, cross sections of the resulting pi(v) surface
are examined in the branch directions, as in Figure 5.4.2, and along the
principal diagonals of hypercubes in n-space. In almost every case, the
minimum so efficiently located is the global minimum for that minimal
candidate topology, i.e., the likely least possible | p | max.

5.4.3 Branch Parameter and Reactance Effects

The variables in the candidate lossless networks are single L’s and
C’s in series or parallel branches, the L in parallel L.C in series branches
or vice versa (traps), turns-squared ratio of an ideal transformer, and the
characteristic impedances (Zo) and electrical lengths (89) of cascade
transmission lines. Short- or open-circuited transmission-line stubs
connected as series or parallel branches produce reactance values
comparable to branch L’s and C's except for stub periodicity, which is
considered below.
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The series branch reactance X(w;) in Figure 5.4.4 corresponds to a
circular image in the input p Smith chart because of the inherent bilinear
mapping in linear networks; see Appendix Section A.3.1. When X— *o

] 30 60 80 120 150 180 210 240 270 300 330 360

¢ —>
Figure 5.4.4. Origin of all p; reflectance curves vs branch jX values.

the network between the series X branch and the input is purely reactive,
so that p must be on the chart perimeter. The p image circle may encircle
the chart origin, which represents the complex normalizing impedance
described in Section 2.1.2. To cover the general case where the image
circle may not touch the perimeter, a straightforward analysis of the
geometry yields the relationship of |p| in Figure 5.4.5 in terms of the p
radius to the center of the image circle, Reen, and the image circle’s
radius, Reir:

A= [(Re, + R ~2R, R (1= c0s9)] (5.47)

Angle ¢ is the angle around the smaller Smith chart image relative to the
point of tangency with the larger Smith chart. The graph in Figure 5.4.4
plots (5.4.7) for ReentReir =1, i.e.,, when the image circle touches the
perimeter. The relationship of ¢ to reactance X is a nonlinear but
monotonic composite function, so that X would have to vary from o to +oo
for ¢ to vary over its entire 360° range. The nature of the |pi('vi)|
reflectance curves in Figure 5.4.2 is now apparent: they are just skewed
arcs of the curve plotted in Figure 5.4.4. The full 360° range is never
traversed by the reactance of any single L or C, which can provide only
all-positive or all-negative values, respectively. In Figure 5.4.2, the
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Figure 5.4.5. Geometry of a p vector terminating on a general circle image.

branch inductor must be in series, as seen by |p | — 1 as L » +o to the
right; to the left, L. > 0, and |p‘ does not reach unity because of the
effect of the load resistance.

A more organized analysis of any of the several types of variables
is obtained by considering the internal interfaces a network component
may have, as shown in Figure 5.4.6. A typical component two-port, such

N, N,
Zs 1 2 | 1 iX 2
+ES 7
Z— I
A B ( 1 ]Xj
C D 0 1
N, N, N,
1 | 2 1 t1 2 _'._m__z.—
iB

1 0 t 0 (cosé’ jZosinGJ
jB 1 0o ¢!

Figure 5.4.6. All lossless subnetworks for interfaces reflectance analyses.

jY,sinf  cosf
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as in Figure 5.4.6, is shown within dotted lines in Figure 5.4.4. Analysis
of just the subnetwork is valid because of Thevenin equivalent
impedances at any interface and the constant generalized reflection
magnitudes (reflectances) throughout lossless networks, as in Figure
2.1.6. Therefore, application of (5.4.3), to find reflection magnitude
la(Zl)l in Figure 5.4.6, also determines lp |, as in Figure 5.4.4.

The preceding paragraphs already predict the result of such
analysis for the series branch, N; in Figure 5.4.6, for arbitrary values of
Thevenin Zs and Zi. For example, Figure 5.4.7 shows reflectance
lo | versus positive branch reactance for particular branch-interface
impedances (reflectance at port 1 in Figure 5.4.6, or at the left side of the
dotted rectangle in Figure 5.4.4). The right-hand side approaches unity

1.0
0.9 }
0.8 |
0.7 4
06 |
051
0.4+

Alpha Magnitude

03 +
0.2
0.1 ¢

0.0 t
0.1 1.0 10.0

Series Branch X Ohms

Figure 5.4.7. Reflectance versus a series branch reactance for network Ni in
Figure 5.4.6: Zs=2+j3, Z1=1-j3 ohms.

reflection as the series reactance approaches infinity. However, this is a
case where the termination impedances restrict coverage of the composite
function, ie. 0<¢<180° in Figure 5.4.4. If this were the only branch
involved, then it could be removed, because its reactance approaching
zero yields the lowest reflectance, i.e. it is monotonic.

The shunt branch, N2 in Figure 5.4.6, is the dual case and can be
expected to provide results similar to series branches. For example,
Figure 5.4.8 shows | a | versus positive branch susceptance for another
particular pair of branch-interface impedances. The right-hand side
approaches unity reflection as the shunt susceptance approaches infinity
and has a single minimum, i.e. the reflectance is unimodal. Therefore,
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Figure 5.4.8. Reflectance versus a shunt branch susceptance for network N2 in
Figure 5.4.6: Zs=3+j0.1, Z1=1+j1 ochms.

series and shunt branches of either L or C cause reflectances that are
either monotonic or unimodal.

Series branches may contain a parallel-L.C pair to produce a zero of
transmission (null) outside the passband; in those cases, the L is the
variable and the C depends on both the L and the given null frequency.
Similarly, shunt branches may contain a series-LC pair, and the C is the
branch variable. Unlike single I's or Cs in branches, the point of
tangency between the input image circle and the reflection perimeter,
Figure 5.4.4, does not correspond to either the zero or infinite value of the
branch variable. This situation is comparable to an off-setting “phase”
component of ¢, which shifts and thus eliminates the monotonic or
unimodal reflectance characteristics shown in Figure 5.4.7 and 5.4.8. A
similar effect is encountered below for the transmission-line 8¢ variable;
Section 5.5.2 shows that in both cases the grid search avoids these minor
aberrations in those reflectance functions.

The ideal transformer, N3 in Figure 5.4.6, scales an impedance, Zi,
seen to its right to the impedance Z1=t?Z, seen at its input port, where t
is the turns ratio. Therefore, an ideal transformer preserves the loaded Q
of the impedance, where QL=Xr/R.. Algebra yields | p1 | from (5.4.2) as

(PR, - R) +(" RO, + X,) (5.4.8)
(tzRL "‘Ies)z'F(llZIQLQL_*‘XIS)2 . h

Ipll =

Appendix Section A.3.2 verifies  that the reflectance in (5.4.8) must
approach unity for very large and very small t2 , and the reflectance is
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unimodal. Figure 5.4.9 shows the reflectance for particular terminations.
It is always unimodal over the complete range of turns ratio.

1.0

09
0.8 +
0.7 4
0.6

05 ¢
04+

Alpha Magnitude

0.3 +
0.2+
0.1 4+

0.0 4
0.1 1.0 10.0

TURNS SQUARED

Figure 5.4.9. Reflectance versus transformer squared turns ratio for network -
N3 in Figure 5.4.6: Zs=1+)2, Z1=1-j1 ochms,

The lossless transmission line, N4 in Figure 5.4.6, has input
impedance (5.1.6)
Vi, +Z, -
Z = F AR y = tand . (6.4.9)
First, consider the behavior of lpll versus 0. According to Appendix A
equation (A.1.1), Z: is a bilinear function of y, where y is a monotonic
trigonometric function of 6 over principal values. Also, (5.4.2) shows that
p1 is a bilinear function of Z1, so that p; is a bilinear function of y as well
(composite bilinear functions are also bilinear). Appendix Figure A.1.1
shows that when Zf*=Z, a real number, the SWR circle is centered on the
origin of the f plane and is eccentric inside the g-plane unit circle. To
incorporate the source and load impedances in Figure 5.4.6, suppose that
the Z-plane SWR circle passes through Zi. (Z1, causes that SWR wrt Zg),
and the g plane is normalized to Zs". Then as 0 varies from ~90° to +90°,
y varies from —o to +wo, which traces over the entire SWR circles in the Z,
f and g planes of Figure A.1.1. In the g plane, there is a vector
terminating on the image circle, lgl—tfpxl as described by (5.4.7) and
Figure 5.4.5. However, in this case of a circular image in the interior of
the g plane, angle ¢ has an implicit relationship to transmission line
length 9, solpxl varies like a distorted sinusoid of arbitrary phase. A
typical example is shown in Figure 5.4.10. Although this is not a
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Figure 5.4.10. Reflectance versus cascaded transmission line length 0 for
network N4 in Figure 5.4.6: Zs=1.0959+j0.211, Z1=0.9615+0.1923 ohms.

umimodal response, it is well behaved. Section 5.5.2 shows that the grid
search avoids this minor aberration in the reflectance function.

Finally, consider the behavior of lpll versus Zo. Unfortunately, Z;
in (5.4.9) is not a bilinear function of Ze. Fortunately, the following shows
thatlpxl is either a unimodal function of Z¢ or at worst has two minima
(bimodal) for 056<.180°. From Ny in Figure 5.4.6, it is seen that
parameters A and D are not functions of Zg, but B is linearly and C is
inversely related to Zo. Therefore, (5.4.3) shows that T—->0 when Zy—0
and also when Z¢—w. Consider the transducer function P=1/T; using the
ABCD parameters given for Ny in Figure 5.4.6 and the expressions in
(6.4.3), it 1s straightforward to obtain the first derivative of P with
respect to Zo. Setting that to zero as a necessary condition for points of
inflection yields

dpP

Z 0= Ko+ K, Zy + AXZ} +(sin€)Z; =0, where

K, =(~sind)¢* + p*), K, =4(Rq- Xp), (5.4.10)
R=R, +R;, X=X, +X;, A=cosl.
Constants g and p are defined in (5.4.3). When Zs=Z1=1+j0 ohms, the
four roots of P occur on the cardinal points of a unit circle in the complex
Zo plane. For any terminating impedances and transmission line lengths
in the range 0<6<180°, sin8>0 and Ky<0. Therefore, there can be only one
or three positive-real roots of T in (5.4.10), corresponding to one or two
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minima of |p1(Zo)| for 0<Zo<w. Thus, reflectance function |p:| is either
unimodal or bimodal on the real-valued range 0<Zo<w. Figure 5.4.11
shows the nominal unimodal behavior of reflectance versus Zo for
particular Zs and Zp. impedances in Figure 5.4.6. Note that the
reflectance approaches unity for both extremes of positive-real Zo.
Section 5.5.2 shows that a bimodal reflectance occurrence does not cause
search problems, as confirmed in Figure 5.5.6.

1.0

0.9 4
08 +
0.7 r—
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05+
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Alpha Magnitude

03 ¢
0.2 ¢

01 4+

0.0 ¥
0.1 1.0 10.0

Z,

Figure 5.4.11. Reflectance versus cascaded transmission line Zo for network Ny
in Figure 5.4.6: Zs=1.0959+j0.211, Z1=0.9615+j0.1923 chms.

5.4.4 The Response Surface

The minimax response surface defined by (5.4.4) and (5.4.5) is
examined by cross sections in one-dimensional subspaces, such as that for
branch 5§ inductance in Figure 5.4.2. Clearly, the response of interest is
not just one reflectance frequency curve but the worst-case reflectance
function composed of reflectance segments, i.e. a continuous, non-smooth
envelope function. The envelope function in each L and C branch cross
section is composed of segments of unimodal or monotonic reflectance
curves, as described in Section 5.4.3. Thus, the envelope functions also
are either unimodal, as in Figure 5.4.2, or monotonic, as in Figure 5.4.12.
A typical minimax response function in two-space is shown in Figure
5.4.13. The negative of the surface is shown for an enhanced perspective.




144

' P
‘ - // gy
-
ﬂﬁﬁf"fyff?/ - 7
= :ﬁr—"jﬁ =% /
JEs=4lB /
. /
/
N4
a

.1 .15 .2 .3 S5 .7 1.8 1.5 2 3 5 7 11
ELEMENT VALUE OF BRANCH 1 C FARADS

Figure 5.4.12. A monotonic envelope function for a branch leaving the solution.
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Figure 5.4.13. A typical response surface in two-space from Section 5.6.1.
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To obtain well-scaled response surfaces, it is necessary to scale the
effects of variables, 1.e. values of L, C, squared turns ratio t2, Zo and 0q.
Because normalization to 1 rad/s and 1 ohm is assumed, units are henrys,
farads, numeric, chms, and degrees at 1 rad/s, respectively. Practical
ranges of variables are shown in Figure 5.4.14 for V, as suggested by
transformation @’s in Section 5.1.4 and by broadband Chebyshev network

Z, Zy, 6y, Z,

0 o
6 ocC eSC

fo: . =9 - ]
— =90{1-V™},V>1
015 45 st L€ ( ) z

0 ° o
9 5 N 905 "sc-90V,Vs1| [oov, v<i

5 _y-!
k] 45 72 90105 135 1 UL‘PO(Z v )’V>1

. o ; - v =10"
0.1 05 08 1 12 2 10 Q
— {X: LOG, I
-1.00 030 010 0008 0300 1.00 0(")

Figure 5.4.14. Mappings for variables to produce well-scaled responses.

element values in Section 5.2.4. The branch cross sections displayed, e.g.
Figure 5.4.12, utilize L, C, t2, and Zo values in the logarithmic V space,
which is simply related to the arithmetic X space as shown in Figure
5.4.14. Unbounded gradient optimization in the X space automatically
ensures positive element values in the V space, because that amounts to
quantifying variables in dB. Every value of x defines a corresonding
value v=10%*. The value of v can be used directly as L, C, t2, or Zo.
Otherwise, the value of v may define a corresponding value of 0y, 0sc, or
Boc (at o=1 rad/s), according to the equations at the top three lines in
Figure 5.4.14 or in (6.2.13)-(6.2.14).

Practical cascade transmission lines have reference electrical
lengths between 0 and 180°. Transmission-line stubs have reference
electrical lengths between 0 and 90°, with a split range to facilitate a grid
search being able to select optionally either a short- or an open-circuited
stub. The values of electrical length shown in Figure 5.4.14 are those at
the defined reference frequency of wo=1 rad/s. Therefore, the variable is
8o, with the understanding that at any other frequency there is an actual
electrical length, 0, that is linearly related to 8o:

0=0—. (5.4.11)

a
Reference frequency wp = 1 may be at the ends or anywhere within the
pass band. However, with stubs it is necessary to limit adjustment of the
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variable 6o to those ranges that do not allow a zero of transmission at any
pass band frequency.

The effects of network variables ranging in X and V in Figure
5.4.14 are well scaled. The L and C values range from approximately 0.1
to 10, as do their reactances at wo=1 rad/s. The choices for transmission
line lengths also result in ladder network branch reactances in the same
range. Consider the T equivalent network for a lossless cascade
transmission line in Figure 5.4.15. For 9<00<171°, the series branch

— sl snl

Figure 5.4.15. The T equivalent ladder network for a cascade transmission line.

reactances range from Zo/12.7 to Zex12.7, and the shunt branch reactance
ranges from Zy/6.4 to Zox6.4 ohms at we=1 rad/s. Normalized Z can range
from 0.1 to 10, although a practical physical range is about 0.4 to 2.5.
Transformer squared turns ratio, corresponding to impedance magnitude
transformation, also can vary from 0.1 to 10. '

Because the effects caused by multiple variables are reasonably
scaled, it is useful to examine the minimax response surface defined by
(5.4.4) and (5.4.5) on the diagonals of n-space hypecubes with edges
0.1<vi10. To visualize how the minimax function behaves for more than
the one and two variables already portrayed, consider a hypercube in the
V space of N variables with each edge varying from 0.1 to 10 on a
logarithmic scale. This is easily visualized in three dimensions as a cube
[Wilde]. The interest is in the rays that connect vertices by passing
through the center of the cube, i.e. the principal diagonals. There are
exactly 2N! such diagonals when there are N variables. For example,
when N=8, there are 128 principal diagonals through the hypercube.
Figures 5.4.16, 5.4.17, and 5.4.18 show typical reflectance curves over
hypercube diagonals for LC networks. The most important response is
the envelope of worst-case reflectance versus diagonal location factor, i.e.,
the linear measure of travel along the diagonal.

The envelope functions in parameter cross sections are either
unimodal or monotonic (UM functions) except where transmission lines
and trap elements are involved. In the latter two cases, there may be
simple aberrations in the UM envelope function that are avoided during a
grid search. In one-dimensional diagonal subspaces, there are only minor
aberrations in the envelope function, which again present no serious
problems for the grid search described in Sections 5.5.2 and 6.3.
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Figure 5.4.16. Reflectances over a diagonal for bandpass topology PiCPiL.
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Figure 5.4.17. Reflectances over a diagonal for lowpass topology LPS6.
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Figure 5.4.18. Reflectances over another diagonal for lowpass topology LPS6.

Examination of cross sections and diagonals for many realistic
matching data sets and network topologies has shown it reasonable to
expect the reflectance envelope minimum found to be global, ie. the
likely best-possible outcome with a candidate reduced-degree, full-rank
topology.

5.5 Algorithms for GRABIM

There are three essential algorithms for GRABIM, the grid
approach to broadband impedance matching: network analysis, grid
search, and constrained optimization. Computational efficiency is
mandatory, because there are several network topologies of varying
complexity to be tested, and each is subjected to both direct and gradient
search procedures. This section describes the general approach for each
algorithm prior to providing specific examples. Details of the algorithms
are provided in Chapter 6.

5.5.1 Efficient Network Selection and Analysis

The possible choices for elements in ladder networks are
summarized in Table 5.5.1. The ideal transformer is included for lowpass
networks, where the actual source resistance must be variable. In those
cases, the source resistance can be fixed, and t2 is varied. See Section
4.5.3.
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Table 5.5.1. Twelve Lossless Network Elements And Parameters.
TYPE | CODE NAME VARIABLE(S) | CONSTANT
1 CS Series Capacitor C
2 LP Parallel Inductor L
3 LS Series Inductor L
4 Cp Parallel Capacitor C
= LCS Parallel LL.C in Series L [
6 LCP Series LC in Parallel C ®
7 XFMR | Ideal Transformer t2
8 CASTL | Cascade Transmission Line Zo,00 ®o
9 SCS Short-Circuit Stub in Series Zo,60 @o
10 | SCP Short-Circuit Stub in Parallel | Zo,00 ®o
11 | OCS Open-Circuit Stub in Series Zo,80 g
12 | OCP Open-Circuit Stub in Parallel | Zo,60 o

Although provisions for description of arbitrary connection of the
elements in Table 5.5.1 is made available to a user (a topology code), it is
often convenient to pre-program various standard topologies. For
example, one such scheme [Cuthbert,1994b] presented the user with 12
different LC topologies, most providing a choice of from two to eight

elements.

“BandPass Parallel”
impedance is in parallel.

Figure 5.5.1 shows such a choice, where BPP means
because the network element next to the load
BPP3 would indicate that the user specified

0_/~0'°\___l j_rv\_K 7y,

<< j‘: BPP

38 76 5 4 3 2 1

I/

o A A S
== e BEPS
T T

S 7 6 54 3 2 1

Figure 5.5.1. Two canonic bandpass topologies based on load connection.

just three elements in the matching network, starting from the load

toward the source.

A fixed number of elements in a useful bandpass

topology is shown in Figure 5.5.2, where the impedance transformation
capabilities of Norton transformers implicit in the Pi networks may be
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Figure 5.5.2. Two double Norton non-canonic bandpass topologies.

advantageous (Section 2.4.4 and Figure 2.4.11). These would be
appropriate where the load is capacitive and the source is inductive, or
vice versa. Also, note the Pi-T conversion in Figure 2.4.9.

A similar pre-programmed topological aid for distributed networks
is provided. For example, the automatic arrangement of stubs and
cascaded transmission lines shown in Figure 5.4.14 assumes that stubs
are always separated by CASTL elements, so that the user can be
presented with a sequence of interdependent choices:

Is the element next to the load a stub?

Lines only , or both lines and stubs?

Total number of lines and stubs?

Open- or short-circuit stubs or both considered?

In many cases a mixed distributed/lumped topology is desirable to create
a band-limited response function. In those and other cases, the user
specifies the desired sequence of element types, as listed in Table 5.5.1.

Once a candidate topology is defined and values are assigned to the
elements, its overall ABCD parameters must be obtained at every
sampled frequency to calculate the transducer gain T in (5.4.3) for the
single or multiple sets of source and load terminations for the respective
frequencies. The ABCD parameters for the four kinds of two-port
subnetworks are shown in Figure 5.4.6. In addition to the reactances or
susceptances of L’s and C’s, a stub in series or in parallel also has its
input reactance or susceptance applied as X or B, respectively. From
(2.6.10), it is observed that the input impedances of stubs are

Zioc =— JZ,c0t8, Z, o = jZ tand . ' (5.5.1)

in
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The reactance or susceptance for traps, applied as X or B for parallel L.C
in series or series L.C in parallel, respectively, is

X=v,—r, LC=%)2, (5.5.2)
AR

where vj is the variable L when X is used; otherwise, change X ohms to B
mhos, and v; is the variable C. The fixed stopband null frequency is o,
and o; is one of the m discrete frequencies in the passband sampling set.

It is noted in Section 2.6.2 that the overall network ABCD
parameters are obtained by multiplying the individual element ABCD
element matrices, starting from either the load or the source end. The
numeric coprocessors in modern PC’s perform any of the basic four
operations (+,—,x,+) in about 1 microsecond (uS). With proper
programming, lossless series or parallel element and transformer ABCD
subsections can be assimilated with just four operations [Orchard], while
the CASTL subsection requires eight operations. The final calculation for
transducer gain T at one frequency by (5.4.3) requires 24 operations.
Including about 50% overhead, the average analysis time per frequency is
in the order of 100 puS. The processing time not yet mentioned is for
calculating the ABCD parameters at each frequency for the subsections.
The equations can be as simple as vjxmi, (5.5.2), or (5.4.11); some contain
trigonometric terms, as in (5.5.1). Because the set of sampled frequencies
is fixed, their contributions, as in (5.5.2), can be precomputed. It is
shown in the next section that the grid search is combinatorial, meaning
that sets of values for each variable are also known in advance.
Therefore, all subnetwork ABCD parameters can be precomputed for the
grid searches.

Incidentally, dissipative elements can be analyzed in twice the
time required for lossless elements. However, allowing dissipation
negates the basic advantage of lossless networks: The reflectance is
invariant at every network interface (Figure 2.1.6). Also, the unimodal
and monotonic (UM) envelope function behavior may be at risk.
Reasonable dissipation and parasitic distortion are generally manageable
by subsequent optimization of the lossless design, a final design step that
is required in most situations where details of element geometry must be
incorporated, e.g. bends in microstrip transmission lines and accurate
models of surface-mounted components.

A speed consideration for personal computers is the fact that
executable binary programs (EXE) compiled from Microsoft Quick-
BASIC® operate about four times faster in DOS “safe mode” than when
the PC is configured for Windows®. Therefore, for fastest operation, those
programs should be run in DOS only, using minimal AUTOEXEC.BAT
and CONFIG.SYS files that do not invoke high-memory management and
other interrupt features required to run Windows®.
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5.5.2 Grid Searches

A grid search tests combinations of element values in a candidate
network to obtain an approximate solution of the minimax matching
objective stated in (5.4.4) and (5.4.5). It is basically a search in
coordinate directions, Figure 5.4.14, using a fixed set of discrete values
for each element. The best combination in the grid is found, then the grid
i1s recentered there in each coordinate direction. Grid evaluation and
repositioning are continued until no further improvement in minimax
reflectance can be found in that grid. The spacing between grid points
(granularity) is then reduced, and the evaluation and repositioning
process is repeated. Usually, only 2-3 repositions are required for each
grid, and only two reductions in granularity are required to arrive in the
neighborhood of the likely global minimum. The benign nature of the
envelope functions, recent research results in the pattern-search
optimization field, and efficient implementation guarantee grid search
effectiveness, as discussed here and explained in detail in Chapter 6.

Consider the grid defined for the two-element network in Figure

Z Z,

T-I’\_BPP
2 1

Branch Numbers

10 -1
Base Point
L - - - L ]
o~ - - - - -
g 1 - - - -
m - - - - -
- - - L J -
01
0.1 1 10
BRANCH 1

Figure 5.5.3. A 5x5 lattice (grid) for a two-branch matching network.

5.5.3. Five discrete values logarithmically centered about unity (the best
guess available) are selected for each branch’s L and C value. Each of the
25 combinations of the element value set {1, 0.6, 1.7, 0.3, 3} for each
branch is tested at three passband frequency samples. Beginning with
1~1 and C=1, compute |p| using (5.4.3) and (5.4.1) for each frequency,
and store the greatest (worst) value of |p| at any frequency with the
corresponding L and C values as the “best case”. Then try L=1 and
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C=0.6; if the greatest |p| versus frequency is less than the stored case,
then store that and the branch values as the best case. A frequency scan
is abandoned whenever |p|at any frequency exceeds the stored case,
because that LC combination has thus failed. Next try L=1 and C=1.7,
ete., until all five branch 1 values have been tried. Then set 1L=0.6 in
branch 2, and go through the branch 1 set again. One of the 25 points in
Figure 5.5.3 is the best case (minimax) for this iteration. Figure 5.5.4
illustrates a grid search using nested programming DO loops for as many
as eight branches; the five-branch case is indicated. The “c dB” notation

START
TRIAL VALUES FOR BRi#

l

The number of combinations for NT

7
3 3 . B
trial values in NB branches per @ : = ¢
~———{> 4
—————>> 3
——— 2
NB| NT=3 5 7 9 11 1
2 9 25 49 8i 121 E @
3w 125 343 729 1,331 a):] = dB
4 81 625 2,401 6,561 - 14,641 :
s 23] 3125] 16807 59,049 161,051 3
6] 729] 15625] 117649]  531.441] 1,771,561 :
7| 2,187| 78,125] 823543( 4,782969] 19487,171 6
8| 6561] 390625 5674,801| 43,046721| 214,358,881 ?

END
Figure 5.5.4. Programmed DO loops performing a simple grid search.

in Figure 5.5.4 indicates a premature failure that allows an early escape
from the frequency loop. For each frequency there could be yet another
loop, not shown in Figure 5.5.4, to process multiple impedances that
define an impedance neighborhood.

In two-space as shown in Figure 5.4.13, the first grid pattern in
Figure 5.5.3 locates the best result in the grid. Next, the grid pattern is
repositioned with the center grid base point, Figure 5.5.3, repositioned to
the stored best result. The branch value combinations (as multiplicative
factors) are again repeated, without duplicating prior grid points, to find
the best point in the repositioned grid. The grid is repositioned in
sequence until the best grid point does not change; that usually requires
about three base-point moves. Then the spacing between grid points
(granularity) and perhaps the number of grid points in each variable are
reduced, and a new set of iterations accomplished. Because the
granularity is reduced twice by a factor of 4, the approximate location
(neighborhood) of the global minimum is suitably obtained.

Grid iterations approximately locate the global minimum of an
envelope reflectance function while avoiding minor |p| surface
aberrations. For example, Figure 5.5.5 shows a cross section for CASTL
length 89, where the lower abscissa is in logarithmic (V) space and the
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Figure 5.5.6. Reflectances versus CASTL impedances Zo.

upper abscissa is in the corresponding 01.° space (Figure 5.4.14 and
(6.2.13)). There is an inferior minimum in Figure 5.5.5 at v=1.6,
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corresponding to 0p =124=90(2-1.6-1)°, which the grid search avoided.
Figure 5.5.6 shows the cross sections for a cascade transmission-line
| impedance, where the bimodal reflectance function at one frequency (two
up arrows) did not affect the grid search result on the envelope. Figure
' 5.5.7 shows the cross sections for the electrical length of a short-circuit
transmission-line stub in parallel (SCP), where the short circuits at two
| frequencies were avoided by the grid search; see 150° and 163° on the
upper scale.
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Figure 5.5.7. Reflectances versus SCP stub electrical length (8¢ at 1 rad/s).

Early investigation explored as many as 11 trial grid points in
each coordinate direction [Cuthbert,1994b]. However, only three or,
better yet, two trial points are required in each variable, as shown in
Figure 5.5.8. The motivation is seen in the approximate time to complete
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Figure 5.5.8. The two- and three-point grid patterns in two-space.
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a full pattern for an LC ladder network:

T, =~ 145x OT x NS x (24 + 7.7 % NB) x NT™  Seconds, (6.5.3)

where OT is four-function (+,—,x,+) time, NS is the number of sampled
passband frequencies, NT is the number of grid trial values, and NB is
the number of branches. Factor 1.45 has been found to account for
general programming overhead. There are 24 operations required to
calculate transducer loss, T in (5.4.3), and the 7.7 factor includes the
basic four operations to process a series or parallel branch and the related
topological overhead.

Example 5.5.1. Suppose that a grid search is to be performed using a PC
having four-function computing time of 1 microsecond. Consider a large
LC network having ten branches that is sampled at 21 passband
frequencies. Problem: Compare the computing times for a full two-point
and three-point grid. Solution: In (5.5.3), OT=1E-6, NS=21, and NB=10,
an upper limit on possible broadband matching network complexity. All
but the number of combinations term (NTNB) in (5.5.3) comes out to be
about 3 milliseconds. The NT=2 hypercube in 10 space requires only
1024 combinations, while the NT=3 trial pattern requires 59,049
combinations. Therefore, the full two- and three-point trial patterns
require no more than 3 seconds and 3 minutes, respectively. Times for
the two patterns can be compared by calculating the ratio 3NB/2NB=] 5NB;
see Table 5.5.2. Actual times are about half as long, because full
frequency scans are seldom required.

Table 5.5.2. Comparing NT=3 to NT=2 Grid Combinations vs NB.

No. Branches 2 3 4 5 6 7 8 9 10
372 2.2513.38]15.0617.59111.4117.91256138.4]57.7

When the base point of the grid patterns in Figure 5.5.8 is
repositioned to a stored best case, the repositioned grid will duplicate
some of the points previously evaluated. Although those duplications can
be avoided to reduce the computing time predicted by (5.5.3), it is clear
from Table 5.5.2 that a practical number of trials per branch must be
NT=2. No limitation is imposed, because NT=2 grids can visit any points
that are available to an NT=3 grid. The grid granularity in Figure 5.5.8
refers to the X space in Figure 5.4.14 and is started with AX = 0.4, so
that a sequence of about three grid relocations will find no better
combination in the approximate range of -1 < x5 < +1. The wide starting
granularity avoids any of the [plsurface aberrations illustrated above.
Subsequent reductions to AX = 0.1 and AX = 0.025 will locate the
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neighborhood of the global minimum (element values in vector v) to
within about 3% (V=100025=1.059).

As detailed in Chapter Six, the element search range in V space
spans the range 0.04<vi<25. Because x;=Logio(vi), the corresponding
range in X space is about —1.40<xi<+1.40. See Figure 5.4.14. The
minimum granularity of AX = 0.025 means that there are potentially 113
discrete values that each element might have. The algorithm by no
means visits all the possible combinations. Instead, it uses function
values to prune the number of grid points that are considered. The grid
search is a scaled, translated integer lattice, and grid points are the
lattice vertices. For scaling factors of powers of 2, all possible points of
the lattice are listed in a matrix template using integer arithmetic, which
is fast, uses little storage, and has no round-off error. Then, any
duplicate testing of vertices i1s avoided by simply sorting an integer list
[Dennis]. Element values are bounded by eliminating the disallowed
values from the list, and holding elements constant reduces the
combinatorial scope. The grid search is nonspeculative, unlike several
simplex algorithms, for example Nelder-Mead and Hooke-Jeeves, which
extend in promising directions by changing the basic search pattern.

In light of the preceding discussion, an overall algorithm for the
GRABIM grid search is shown in Table 5.5.3. Although the description is
given in terms of the X space, it should be noted that the actual network
element parameters are in the V space or its subsets, Figure 5.4.14, i.e.
v=10* for v; and x;.

Table 5.5.3. The GRABIM Grid Search Algorithm Without Details.

1. Set base point x»=(1 1 ... 1)T in space EN,

2. Set AX=0.4 and |p | max=1.0,

3. Evaluate | pik| at each previously untested kth point in the
grid (£2N points) at all o;, i=1,2 ... m, to find | pik | max that
occurs at combination xk,

4. If lpiklmax< lplmax: then'P'max:lpik‘max and x> = xk and
go to step 3, else

5 If lpik,maxz ,plmax‘v’k, then AX=AX/4,

6. If AX <0.025, stop, else go to step 3.

The GRABIM grid search converges unfailingly to a point where the
function is non-differentiable (at an envelope “knot”) or the gradient
vector (all coordinate slopes) is zero [Torczon,1991:143]. Although the
grid search reliably locates the neighborhood of the minimum, its final
rate of convergence is extremely slow.

5.5.3 Constrained Optimization for Element Removal

A reduced-degree, full-rank network is defined as one where all
elements contribute to a minimax matching solution. A precise solution
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of the minimax problem for a candidate network is required so that
noncontributing elements are removed, i.e. elements that have monotonic
envelope functions. Indeed, if one or more full-rank network topologies
were known for a given data set, many common optimizers might find
global matching solutions. The challenge is to process a network
potentially more complicated than necessary and eliminate those
elements that do not contribute to 2 minimax solution.

To obtain rapid convergence to a precise minimax solution, it is
necessary to employ an optimization strategy based on the gradient of an
objective function. The gradient is the vector (set) of first partial
derivatives of an objective function with respect to (wrt) each variable.
The objective envelope function of lpl versus each variable is composed
of arc segments (Figure 5.4.2). The envelope function is continuous but
nonsmooth, and the partial derivatives are discontinuous at the knots
(joints) of the segments. However, the minimax problem can be
reformulated using only smooth functions, so that a special constrained
optimization problem can be solved by numerically well-behaved
algorithms. Those constrained optimization algorithms are only valid
when started from the neighborhood of a minimum, which is always
available by the grid search. Ultimately, the constrained optimization
problem is solved by a sequence of unconstrained minimizations. A
general explanation here is followed by more details in Section 6.4.

Figure 5.4.14 shows that the network variables, v;, must remain
strictly positive, but that the relation x;=Logio(v;) transforms the problem
to a domain where there is no restriction on the x; variables. For that
and other reasons, the minimax problem originally defined by (5.4.4) and
(5.4.5) 1s reformulated:

Minimize x,,,, such that p(x)= ‘p(x,a)l. va)| <Xy, ,i=ltom (5.5.4)

As before, there are m sampled frequency points in (5.5.4), e.g. m=8 in
Table 5.4.1. For each of the sampled frequencies, oi, there is at least one
associated data subset, D;, namely the goal, Ry, X1, Rs, and Xs values for
each frequency. Reflectance | plmax is formally identified as an added
variable, namely xn+1. The column vector x is related to all N variables of
the matching network, e.g., values of L, C, Zo, 0o, and t2, and to | P | max by

x=(x1,x2,~- ,xN,xNH)T , wherex; = Log,o(vj),j=1to N. (5.5.5)

Section 6.4.4 describes one of several gradient-based optimizers
that efficiently and accurately solve unconstrained problems, i.e.,
minimize some F(x) using the first partial derivatives of F wrt each x;.
This second stage of GRABIM repeatedly solves a particular optimization
problem:

Minimize F(x) = x,,,, + Zm:s‘, max{[p,. - (g,. + Xy — u,.)], 0}2. (5.5.6)
it
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Minimizing objective function F(x) minimizes xnn =] p |max and a
summation of positive terms. The “max” prefix denotes a choice of the
strictly positive quantity within the {} brackets, either =zero or [pi —
(gitxn+1~ui)] if the latter is positive. The desired value of reflectance p; at
frequency o is goal? gi, often zero but generally any value in the range
0<gi<1. The float to all goals is xn+1, and the offset to each goal gi at w; is
ui. The weight 1s s;, a multipher to add emphasis to F(x) at frequency
sample wi. There are two nested optimization loops; an outer loop adjusts
si and u;, and then an inner loop adjusts vector x to minimize (5.5.6). The
following describes in general terms how and why those repeated
optimizations of (5.5.6) determine vector values of s=[si] and u=[ui] so that
F(x*)=xn+1, where x=x* solves minimax problem (5.5.4).

This five-part explanation builds from a simple concept. First,
suppose that xn+1=0, s;=1, and wi=0 for all i in (5.5.6). Then (5.5.6) is
reduced to the situation in Figure 5.5.9, corresponding to some choice of
network element values in vector x. It is desired to vary x to satisfy the
inequality constraints:

psg, =12, m (5.5.7)
NS 2
Minimize /' = Z S; [max(r,. ,O)]
‘\ i=1
{ o LLOSS or REFLECTANCE
9 X GOAL or TARGET
3 4\ Y, RESIDUAL
Z,
< A\
B \
g \
=1 \ // \ X
: ST N s
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Figure 5.5.9. Minimizing binding residuals by an external (quadratic) penalty.

The residual error, pi~gi, at any frequency is just the difference between
the reflectance and its goal, and it has a direction, depending on whether

3 All usage of g below represents a goal value and not a lowpass prototype value as above.
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the residual is unsatisfied (binding) or more than satisfied. The residuals
at frequencies oi, o2, and w3 are binding (positive), and each contributes
a squared-error term in the summation. The residuals at frequencies w4
and ws are satisfied (negative) and do not contribute to the sum of
squared errors. A minimizer of F(x) tends to work hardest on the squared
residual error at w1, because it is the largest term in the summation. As
the set of network variables in vector x is adjusted, one residual error
may be less prone to be reduced than the others, in which case its
respective weight, s;, can be increased to force more emphasis where it is
needed. Unfortunately, that weight may have to be increased to infinity
to force that error to the value of one or more of the other residual errors.
Doing that causes ill-conditioning and is a poor strategy. Similarly,
unlimited increases of the exponent on the residuals in Figure 5.5.9 also
results in ill-conditioning; see Section 6.4.5. In most cases, (5.5.7) cannot
be obtained, and only the largest positive residuals can be equalized.
Second, a minimax solution demands more than equal maximum
errors — it requires that those maximum errors be minimized. See Figure
5.5.10. An added variable, xn+1, “floats” all the goals, and xn+1 can be

ALoss

XartGy
G“-—— __-l.. . o ® !

Figure 5.5.10. Goals are floated by an added variable, which is also minimized.

minimized to produce a minimax solution. The process of reducing all the
goals and thus making equal maximum errors more difficult to obtain
aggravates the problem of one or more weights, si, tending to infinity.
However, that difficulty can be avoided by offsetting each goal by an
amount u;; see (5.5.6). Suppose that the ith residual is less prone to be
reduced as vector x is varied. Instead of increasing s; without bound, u;
can be increased, which increases the size of its squared residual and its
contribution to the error summation. Therefore, offsets wi have the effect
of requiring only moderate increases in weights s;. This strategy is called
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the augmented Lagrangion technigque, which takes its name from
Lagrange multipliers relating the weights and offsets.

Third, the key concept for solving minimax problem (5.5.4) is a
theorem due to M. J. D. Powell [Powell, 1967:284]:

If the value of the variable vector x which minimizes F(x) in
(5.5.6) is x*(s,u*), then x* is a solution to the constrained problem

Minimize x,,,, such that p, < (g,. + xN“). (5.5.8)

The weights in vector s must be suitably large but not infinite. The
solution, x*, is a function of only u, the vector of individual offsets, which
must be adjusted so that u=u* makes the summation in (5.5.6) zero at x*
while xn+1 is minimized.

Fourth, it can be shown that, at the minimum F(x*) in (5.5.6), the
weights and offsets are related by a set of constants called Lagrange
multipliers, Ai:

A=su, i=1L2,---,m (5.5.9)

Originally, Lagrange multipliers were applied to equality constraints,
ie., where only an equality in (5.5.7) was considered. However, for
binding inequality constraints, (5.5.9) applies; otherwise, A=0 for
satisfled constraints. Lagrange multipliers are sensitivities of an
objective function wrt relaxation of the constraint constant. Suppose that
goal gi in (5.5.7) is increased by a small amount, say &. Then, the
Lagrange multiplier can be interpreted as

1= OF (x )’
i a&‘i

for the binding ith constraint at the minimum point x*. The Lagrange
multiplier has been called the shadow price in economics, where ; shows
how the objective function F will change for small changes in the
constraint constant. In other words, tough, unyielding constraints have
large Lagrange multipliers, whereas easily-satisfied constraints have
much lower values. :

Fifth, the fact that constraint weights and offsets, si and uj, are
related by a constant, as in (5.5.9), provides a way to adjust their values
during a sequence of unconstrained minimizations of F(x) in (5.5.6). An
additional advantage is knowing when they should have a larger product,
which is when their related residual errors are slow to reduce. A
simplified algorithm for finding the solution of (5.5.4) is shown in Table
5.5.4. Powell’s augmented Lagrangian technique converts the constrained
problem in (5.5.4) to a sequence of unconstrained minimizations in
(5.5.6). The details of step 5 in Table 5.5.4 are in Section 6.4.3; that
simple algorithm for adjusting all s; and ui converges linearly. Step 3, for

(5.5.10)
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the inner unconstrained minimization of F(x) in (5.5.6), converges at a
much faster (quadratic) rate, as explained in Section 6.4.4.

Table 5.5.4. The Augmented Lagrangian Algorithm Without
Details.
See Equation (5.5.6).

1. For the initial x vector, set xn+1=max{pi~gi, 1=1, 2, ... ,m},

2. Set all u; offsets to zero and all s; weights equal to a value
that makes the summation equal to IxN+1 | ,

3. Minimize F(x),

4. If the change of | xn+1] is less than some small criterion
then stop, else

5. Adjust s; and u; according to the augmented Lagrangian
strategy and go to step 3.

5.6 Examples Using GRABIM

Given frequency-sampled load and/or source impedance data
normalized to one ohm and one rad/sec, each of the following examples is
solved for one or more candidate matching networks. This multiplicity of
candidates is a characteristic of other numerical matching methods
(Dedieu:570] and is not a severe disadvantage, because of ease of use,
rapid and reliable convergence, and the low order of broadband matching
networks. Therefore, it is possible to test all feasible topologies
systematically in a relatively short time. The special advantage of
GRABIM is that it obtains the likely global solution for candidate
network topologies that are pruned to full rank.

5.6.1 Example of a Non-Analytic Bandpass Problem

The data for this double-matching problem are obtained from
source and load RLC models that could not conceivably have analytic
solutions [Yarman,1990:220]. The source impedance is derived from a
series resistance paralleled by a series LC branch that is resonant at
1.291 radians per second. Because the passband extends from 0.3 to 1.0
rad/s, the source impedance varies drastically, especially near the upper
passband edge. The load impedance is derived from a parallel RL in
series with another L, a situation where analytic theory is also unlikely
to apply.

The normalized data are presented in Table 5.4.1, with eight
passband frequencies at 0.1 rad/s intervals from 0.3 to 1.0 rad/s. The
source resistance varies from 0.71 down to 0.04 ohms, and the source
reactance is strictly capacitive. The load resistance varies from 0.6 to
0.95 ohms, and the load reactance is strictly inductive. The Norton
transformation illustrated in Figure 2.4.11 suggests a way to deal with
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an inductive load having resistance variation, and the dual Norton
transformation similarly might equalize the capacitive source having
drastic resistance variation. Therefore, the PiCPiL topology in the lower
half of Figure 5.5.2 is tested by GRABIM.

Figure 5.6.1 shows the insertion loss after the grid search for the
original six-element bandpass network. The result obtained by the
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Figure 5.6.1. GRABIM results after each stage for Yarman example 3.

minimax-constrained optimization improves the insertion loss and also
eliminates one capacitor and one inductor. The final topology and
element values are shown in Figure 5.6.2(a). Other techniques also have

(a) Best case found:
097<8S,,dB<1.24

056  7.84 2.45__4
(b) Five branch bandpass ’_/U\I—*

0 1.40
1.21 <8, dB< 1.63 T

(b)
434 2.34

(¢) Five branch highpass
0.88<8S,,dB<1.75

0.68 1.07 8.92

(c)
Figure 5.6.2. Three reduced-degree full-rank solutions for Section 5.6.1.

obtained the same solution {Sussman-Fort,1991:Example 2]. Starting
GRABIM with topology BPS6 (Figure 5.5.1) yields a similar solution,
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except that a fifth element (a series inductor between the two C's) is
slightly involved in the solution. Yarman’s solution by the RFT required
six elements (3 L's, 2 C’s, and an ideal transformer) [Yarman,1990].
Figures 5.6.2 (b) and (c) show two other solutions obtained by GRABIM.
Choosing a particular solution depends on physical and electrical
requirements of the intended application. The main point is that several
solutions can be obtained easily.

Several figures show aspects of this example after the complete
optimization that started with the topology in the lower half of Figure
5.5.2. Figure 5.4.2 shows the cross sections for the branch 5 series
inductor (unimodal envelope), and Figure 5.4.3 is a close-up of the five
binding and three non-binding reflectances. Figure 5.4.12 shows the
cross sections for the branch 1 parallel C, which is forced out of the
network (monotonic envelope). Figure 5.4.13 shows the 3-D plot of the
envelope surface over the subspace of Cz versus Cs. Finally, Figure 5.4.16
shows the reflectances along one particular hypercube principal diagonal
for non-optimal values of the six network elements in the lower half of
Figure 5.5.2.

5.6.2 Example of a Distributed Interstage Network

Field-effect transistor (FET) scattering parameters have been
tabulated at 4.0, 4.5, 5.0, 5.5, and 6.0 GHz, so that an interstage
matching network can be designed to transfer power between two of these
active devices [Ha]. Program S11TOZ.EXE is used to convert the Sao
data to normalized source impedances and the Su1 data to normalized
load impedances, as shown in Table 5.6.1. The same program is used to
invert the source impedance to admittance.

Table 5.6.1. Tabulated Double-Match Data For Example 5.6.2.

Rad/s g RL XL Rs Xs Gs Bs

.8 0 .2317099, -.9217876 .8684981, -1.220389 0.387 0.544
9 0 .2313423, -.7275047 .7550188, -1.029207 0.463 0.632
1 0 .2284464, -.5775817 .6481531, -.914911 0.516 0.728
1.1 0 .2234532, -.457425 - .5405782, -.8240196 0.557 0.848
1.2 0 .213391, -.3397249 .4551464, -.7313804 0.613 0.986

A simplified model of FET input and output immittances has series RC
and parallel RC networks, respectively. The FET input RL and XL, data in
Table 5.6.1 do approximate a series RC network, as expected. However,
the conductance for the FET output, Gs, is not at all constant. That
anomaly does not affect the GRABIM technique.

The interstage network topology used by Ha is shown In Figure
5.6.3. There are six variables: Three Z¢'s and three line lengths at 1
rad/s. Each Zo is started at unity, as are the line-length arguments,
which correspond to 90°, as shown in Figure 5.4.14. The grid search
produces a trivial answer unless constraints are applied. Because
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Figure 5.6.3. Transmission-line interstage matching network for Section 5.6.2.

physical Zy's occur between 20 and 125 ohms, the normalized Zo's are
constrained: 0.4<Z9<2.5. The grid search obtains a maximum S21=0.92 dB
across the passband, and minimax-constrained optimization reduces that
to S91=0.53 dB. The final element values in Figure 5.6.3 are Zo1=2.5
ohms (normalized), 001=6°, Zo2=1.89 ohms, 002=16.3°, Zo3 =1.75 ohms and
003=21.6°.

5.6.3 Example of Neighborhood Matching

The source and load data in Table 5.6.1 for a FET are used to
design an interstage network composed of lumped inductors arranged in
a T topology. Furthermore, the FET Sj; data often varies because of the
device location on semiconductor wafers, as well as with high signal
levels during operation in amplifiers. That uncertainty is illustrated in
Figure 5.6.4 in the Smith chart (a circle of unit radius), where the circles
of Sg2 data have a diameter of 0.07. The GRABIM technique is well
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Figure 5.6.4. Scattering parameter uncertainty on a Smith chart.
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suited to deal with multiple terminal data at each frequency, because the
network analysis algorithm described in Sections 5.5.1 and 6.2.3 obtains
the overall network ABCD matrix at each frequency and then applies
(5.4.3) to find transducer gain T for each distinct terminal impedance.
Only 24 basic operations are required for (5.4.3). The neighborhoods
shown in Figure 5.6.4 are adequately modeled by five values at the
vertices of pentagons, so only 24x5 basic operations are added to each
frequency. This example assumes the impedance uncertainty and
illustrates the effectiveness of compensating for that uncertainty.

Figure 5.6.5 shows a T subnetwork of lumped inductors followed
by an augmenting el section, Cz and L;. Table 5.6.2 summarizes
performance of the original three-inductor design and the effect of
uncertainty in S22.

Figure 5.6.5. The T section is augmented by an el section for neighborhoods.

Table 5.6.2. Performance Before, After, And Compensated.
Performance of Network in Figure 5.6.5 Without Neighborhood S,, and C, & L;:

Design from L;nH L;nH LsnH | 40GHz | 45GHz | 5.0 GHz | 5.5 GHz | 6.0 GHz
Ha Figure. 5.25 0.42 0.94 1.05 0.57dB | 0.23dB | 0.44dB | 041dB } 0.75 dB
GRABIM 0.35 1.04 1.10 0.51dB | 043dB | 0.51dB | 0.34dB | 0.51dB

Performance With Neighborhood S,, (Without C, & L,) After Re-Optimization:

L; nH L,nH LsnH
0.33 0.78 0.60 4.0 GHz 4.5 GHz 5.0 GHz 5.5 GHz 6.0 GHz
Max S, 1.17 1.19 1.18 0.96 1.19
Min S 0.39 0.80 0.85 0.62 0.75

Performance of Full Network in Figure 5.6.5 With Neighborhood 5,, and C, & L;:

L, nH C, pF L, nH L,nH LsnH
1.15 5.98 5.14 1.73 043
4.0 GHz 4.5 GHz 5.0 GHz 5.5 GHz 6.0 GHz
Max S, 0.50 0.50 0.50 0.50 0.47
Min S, 0.26 0.25 0.27 0.26 0.23

Using the original data without neighborhoods, the GRABIM result is
comparable to the original design [Ha:Figure 5.25]; the maximum Sg1 is
about 0.5 dB. When the neighborhoods are included, the original T
network design causes 3.15 dB loss at one frequency. After re-optimizing
the T network, that is reduced to no more than 1.19 dB, as shown in the
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middle of Table 5.6.2. Augmenting the original T network with two more
elements (an el section), as in Figure 5.6.5, provides a GRABIM solution
having no more than 0.5 dB loss again as shown at the bottom of Table
5.6.2. That is a small price to pay for the severe loss penalty in not
accounting for scattering parameter uncertainty. Note the fundamental
relationship for sizes of matched neighborhoods in Appendix A, Section
A.2.3 and Figure A.2.2.

5.6.4 Example of Topological Simplification and Sampling

Alternative solutions for an LC interstage network [Yarman,1982]
have been published [Abrie,1991]. Data for the six linearly-spaced
frequencies were tabulated from 8.0 to 13.0 GHz and are shown in Table
5.6.3, normalized to 50 ohms and 10.198 GHz. The normalizing frequency
is the geometric mean of band edges 8 and 13 GHz, consistent with the

Table 5.6.3. Normalized Data for Yarman’s Interstage Example.

Rad/ls ¢ Ry XL Rs Xs
0.7845 0.00 0.195 -0.889 2.170 -4.225
0.8825 0.00 0.193 -0.776 1.871 -3.944
0.9806 0.00 0.194 -0.697 1.740 -3.699
1.0786 0.00 0.193 -0.631 1.438 -3.487
1.1767 0.00 0.194 -0.577 1.270 -3.292
1.2748 0.00 0.194 -0.5630 1.130 -3.125

candidate network used with GRABIM: BPP6, shown in the upper half of
Figure 5.5.1. Four of the six elements vanish, leaving only L2=0.863 and
Ls=3.35 henrys and obtaining a maximum passband loss of 0.558 dB.
This is a case starting with a marginal number of frequency samples for
six variables (there should be at least N+1 and preferably 2N samples).
The surviving two elements are obviously a minimal topology (rank 2).
Candidate network BPP4 (Figure 5.5.1) has no sensitivity to the six
samples and obtains the same result.

Yarman’s solution required six elements and an ideal transformer,
i.e. seven elements, and obtained a passband loss of 0.600 dB. Two
solutions were obtained using Abrie’s transformation-@Q technique
[Abrie,1991:149]: (1) three elements and 0.565 dB, and (2) five elements
and 0.386 dB. ‘

5.7 Summary of Matching Networks

Single-frequency impedance matching using el, T, and Pi sections
to obtain conjugate match (zero reflectance) between real and complex
terminating impedances is described. The roles of loaded Q in the 1+Q2
method and transformation resistances are emphasized. The input
impedance of a lossless (cascade) transmission line’s dependence on its
load impedance is the means for finding Zo's and 6‘s that provide zero
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reflectance for given terminations. These parameters and concepts also
play a role in broadband matching.

Fano’s analytic gain-bandwidth limitation is described as the area
under the return-loss curve, fixed strictly by the loaded Q of single RLC
load resonators relative to the bandwidth measured by Qsw. The main
design parameter is the decrement: 8=Qpw/Qr. Although not optimal, the
Chebyshev equal-ripple function from filter theory is also applied to the
broadband matching situation. There are two degrees of freedom
available in this gain-bandwidth problem, and the one constraint of a
single-match load allows minimization of the maximum passband
reflectance. Adding a given source resonator consumes the second degree
of freedom, so that the maximum passband reflectance is predetermined.
The same is true for the singly-terminated case, for the same reason. In
each case, it makes sense to consider the improvement availabie as the
number of matching elements increases without bound; only in the
single-match case can the reflectance approach zero. The recursive
equation for matching network element values is provided, which applies
to all cases including filters. References are provided for measuring the
loaded Q of single resonators for those few situations where analytic
gain-bandwidth theory applies.

The real-frequency technique (RFT) originated by Carlin is briefly
described, especially its dependence on advanced mathematical
considerations and a sequence of less-than-certain optimizations. The
RFT was the first advanced technique to consider the practical situation
where one or both matching network terminations are characterized only
by a tabulation of impedances at a discrete set of frequencies. A
piecewise-linear representation of the matching-network Thevenin
resistance function over all real frequencies is a sum of weighted basis
functions at the load port. Because the imaginary component can be
determined using the Hilbert transform, that Thevenin impedance and
the load impedance enable calculation of the reflectance at each of the
sampled frequencies. The Thevenin resistance function has adjustable
parameters to optimize the reflectance variation versus frequency. A
rational, even resistance function of assumed degree is then fit to the
Thevenin piecewise-linear resistance function by a second optimization.
Finally, an LC ladder network can be synthesized from the latter
function for a resistive source impedance, i.e. the single-match case.
Solution of a set of linear equations is required for that synthesis.

The double-match case, where the source impedance is complex as
well as the load impedance, is accommodated in the RFT by considering a
transducer gain expression, T, involving the source reflectance wrt to 1
ohm and the transfer phase angle, ¢, available from the rational
resistance function. A third optimization that includes repeated solution
of linear equations is required, because T involves ¢.
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An improved broadband matching technique employs Brune
functions that represent the Thevenin impedance at the load port in a
form similar to a partial fraction expansion. Nearly two-thirds of the
original RFT procedure still is required to provide approximate locations
of the impedance-function pole locations, which are then optimized over
each s=c+jo pair of variables to obtain optimal T. The Brune impedance
representation of chosen degree guarantees that all network elements
subsequently synthesized will have positive values. Double-matching for
active devices has also been formulated, again using optimization
variables in the Laplace s plane, with enhancements that include device
stability and terminal reflectance added concurrently in the optimization.
None of the above techniques feature optimization with certain outcome.

Discrete sets of tabulated terminal impedance data also initiate
the grid approach to broadband matching (GRABIM), a two-step
optimization procedure that is robust and avoids most of the mathematics
required for the RFT. Reflectances are reflection-coefficient magnitudes,
| ploi) [, at each sampled frequency, @i. The benign behavior of
reflectances versus any of the five types of network element parameters
(L, C, Zo, 89, and t2) suggests that a very effective matching technique is
to perform a minimax-constrained optimization on one or more candidate
network topologies. The augmented Lagrange multiplier technique is a
gradient-based algorithm that reliably and precisely solves inequality-
constrained optimization problems when started from the neighborhood
of a solution. It can also be modified to minimize the one or more
maximum reflectances over frequency (minimax), and it removes network
elements that are not contributing to the solution. This last feature is
the primary advantage of GRABIM, because if a minimal network
topology were known, then many ordinary optimizers might find the
global solution.

The essential first step in GRABIM is to locate the neighborhood of
the likely global minimax solution by a non-speculative grid search made
feasible by efficient algorithms executed at the high speed of current
personal computers. Worst-case reflectance envelopes versus parameters
L, C, Zy, 9o, or t2 are mostly unimodal or monotonic, arc-wise continuous,
nonsmooth functions. The grid search evaluates the minimax function
values at all vertices of a hypercube on the parameter coordinates, and
the hypercube is then recentered on the least value found. That sequence
terminates in two or three moves. The initial hypercube size (spacing
between coordinate samples) spans about 40% of likely solution space, to
reduce the function value while avoiding occasional minor local minima.
That size is reduced twice by a factor of four after hypercube moves
terminate, locating the likely global minimum in parameter space to
within about 3%. The grid search definitely avoids the minor aberrations
in the function surface that sometimes occur in the likely solution space.
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Four examples of GRABIM are provided, with comparisons to RFT
solutions. One example describes another advantage of GRABIM: It
efficiently solves the problem of terminating impedance uncertainty that
often occurs in steerable antenna arrays, mobile antennas, and
transistors. In that example, it is shown that a small addition to network
complexity can guarantee the same matching performance for 3.5%
impedance tolerance compared to the original network with no load or
source impedance variation. The fundamental relationship for the size of
matched impedance neighborhoods is noted (Appendix A, Section A.2.3).
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6. GRABIM in Detail

This chapter provides a concise description of the equations and
algorithms that implement the grid approach to broadband impedance
matching. Some of these algorithms also apply to similar tasks, e.g. to
Orchard’s iterated network analysis. In most cases, the several distinct
procedures have been thoroughly documented in the literature. They are
brought together and referenced here to implement the GRABIM
technique, which finds the likely global solution for a reduced-degree full-
rank network topology without the complications of polynomial synthesis.
These procedures need to be programmed only once, not for each and
every different problem. Alternative constrained optimization methods
are also summarized. '

6.1 Formulation

The broadband impedance matching problem using tabulated
(real-frequency) impedance data belongs to the well-known category of
nonsmooth optimization. “A function is smooth 1if it is differentiable and
the derivatives are continuous” [Rockafellar,1994], [Polak]. A nonsmooth
function lacks some of the properties usually relied upon in analysis, and
that is the case with the reflectance envelope functions described in
Section 5.4.4, where the first partial derivatives are not continuous. Both
general and specific problem formulations are described.

6.1.1 The General Problem

One of the most common situations concerming envelope functions
1s that of minimizing a function f(x) having the form

f(x)=Tpx) for xeR", (6.1.1)
where ¢ is “belongs to”, and I is some infinite or finite set. In the
broadband matching problem, 7 is a set of frequencies, p; is the
reflectance (magnitude of a generalized reflection coefficient), and n is the
number of matching-network element values related to the variables in
vector x. The name semi-infinite programming (SIP) has been applied to
(6.1.1), because x represents a finite number of variables, while I can be
an infinite set. That subject has been surveyed [Hettich], and various
specific solution techniques have been proposed [Charalambous], [Zhou],
[Rustem], based on I being a finite, discretized set. Considerations for
selecting the sample subset of I (frequency) are discussed in Section 6.4.6.

6.1.2 The General Solution

The usual approach to minimizing (6.1.1) is to define an added
variable, xn+1, and then to solve the problem

min x,,, s.2. ™ (p,(x) - %,.,)50, (6.1.2)

ief
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where “s.t.” is “subject to.” This shifts the effect of nondifferentiability of
(6.1.1) into a set of inequality constraints. Where constraints are
involved, Lagrange multipliers are not far behind [Rockafellar,1993].
One Lagrange multiplier method for solving (6.1.2) is Sequential
Quadratic Programming (SQP), which linearizes the active (binding)
constraints [Gill]. Also, there is often emphasis on heavily discretizing
iel [Zhou}, which is not overly crucial to the broadband impedance
matching problem. See Section 6.4.5.

Other methods for solving (6.1.2) include barrier and penalty
functions, which add terms to the objective (xn+1 here) which vanish only
at the constrained optimum. Current interior barrier methods add
logarithmic terms, so that all values of x during minimization must
remain feasible, 1.e. all constraints always must remain satisfied

[Polyak]. Conversely, exterior penalty functions add terms to the

objective function that always have some constraints violated during
minimization [Gilll. GRABIM has been implemented using the latter,
quadratic penalty functions.

6.1.3 The Specific Problem

The complex transducer function for a lossless network terminated
by complex load and source impedances, Zi, and Zs, is [Frickey]
AZ, + JB+ jCZ.Z. + DZ
- L TJ JCbgly s ’ (6.1.3)
2JR.R,
where each of the four ABCD parameters is real (B and C are real
coefficients of imaginary numbers). Consistent with Sections 5.4.2 and
5.4.3, the transducer power function is ‘
P
P=|H =—%>1. (6.1.4)
P L
The transducer power function P; at the ith frequency sample is
monotonically related to its reflectance, pi= l plwi) '; see (5.4.1). Although
the reflectance is theoretically significant and scaled for easy display, the
transducer function is used here as an optimization objective, because it

varies from unity to infinity and is easier to manipulate. The related
power loss function is

L=10Log,,P dB. (6.1.5)

Therefore, the specific GRABIM problem comparable to (6.1.2) is
- ominx,, sty [(P, - gi) - x,,”] <0, (6.1.6)
where goal or target loss, gi, has been inserted for every sample:
g =10L/‘° , LindBatw,. (6.1.7)

The numerical method for solving this problem is detailed in Section 6.4.
It is noted in Section 5.5.3 that the neighborhood of the solution must be
found in order to apply a Lagrange multiplier technique using partial
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derivatives. The requisite grid search for that purpose does not require
derivatives, but efficient computation of the transducer power function is
essential. The next section provides those details.

6.2 Networl Analysis

Computation of the transducer power function and its derivatives
in terms of the matching network’s overall ABCD parameters is
described. There follows a concise listing of the ABCD parameters and
their derivatives with respect to the variables in vector x for each
constituent network element type. Finally, the algorithm for obtaining
the overall network’s transducer power function and its derivatives with
respect to x at a frequency is detailed.

6.2.1 Transducer Function and Its Derivatives

The transducer power function is given in (5.4.3); for completeness,
the inverted transducer power function is
P, (AR ~Cq+DR,) +(B+Cp+ DX, + 4X,)

_Es _ 6.2.1
F=7 4R,R, ’ 62.1)

where frequency-dependent constants are

q=(XR, + X,R), p=(RR, - X;X,). (6.2.2)
Partial derivatives are indicated by shorthand operator notation
8
=—. 2.
A, 2y (6.2.3)

For example, AaP is the first partial derivative of P with respect to (wrt)
chain parameter A. It is anticipated from (6.1.6) that such partial
derivatives will be required for later conversion by the chain rule to be
wrt the element parameters, namely L, C, t2 Z; and 0, and
subsequently to the variables in vector x. The derivatives, AP, are
available directly from (6.2.1), but it is easier to obtain them from (6.1.3)
using the identity [Cuthbert,1983:102]

AHF = 2Re[H'(AyH)], (6.2.4).

where Re means “the real part of” and the * superscript denotes complex
conjugation. Conjugating (6.1.3) yields

H =(4Z; - jB- jCZ;Z, + DZ})/2,[R:R, . (6.2.5)

The partial derivatives of (6.1.3) wrt A, B, C, and D are
AH =2, [(2JRR,). Ay H = j/(2JRE,),

(6.2.6)
AcH=j7,2, [(2JRR, ). A H =7 [[2JR.R,).
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Therefore, application of (6.2.4) yields the derivatives of transducer power
function, P, wrt the overall matching network’s A, B, C, and D:

A, P= (IZL|2A +X,B- Xz, C+ rD)/(ZRSRL),

A,P=(X,A+B+pC+X,D)/(2R;R,),
6.2.7)
AcP= (’ x,jz,[ 4+ pB+iz,f |z, Cc- XLIZSFD) /(2&;R,),

AP =(ra+xB- x|z c+lzf D) /(2R R,).
Constant p in linear equations (6.2.7) is defined in (6.2.2), and a new
constant also is employed:
r=(RyR, + X, X,) (6.2.8)

6.2.2 Derivatives with Respect to the Variable Space
Partial derivatives of P wrt variables in the x space are needed

eventually., By the chain rule,

JP JP JE

dx, OJE Ax,’
where xx is the kth variable in vector x, and E stands for chain parameter
A B, C, or D. The middle term comes from (6.2.7). The following deals
with the last term in (6.2.9).

Section 6.2.3 shows how to compute efficiently and accurately data
items:

ie, A, P=A,PxAE, (6.2.9)

1. The overall matching network’s ABCD parameters using each
kth constituent element’s AxBxCxDx parameters, and

2. The derivatives wrt x of the overall matching network’s ABCD
parameters using the derivatives wrt x of each kth constituent
element’s AxBrCxDx parameters.

Data item 2 above produces the needed last term in (6.2.9) if the
derivatives wrt x of each kth constituent element’s AxBxCiDy parameters
are made available as follows.

Recall from Section 5.4.4 and Figure 5.4.14 that the optimization
variable space, X, was logarithmically related directly to element
parameters L, C, t2, Zo, and, indirectly, to 0o in the V space. It is more
convenient for both notation and computation to use the natural
logarithm for that purpose:

x=Lulv), v=¢ (6.2.10)
Note that the partial derivative of v wrt x is
17} .
Av=LLoy, 6.2.11)
Jx
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Therefore, the chain rule can be applied to convert the derivatives wrt vi
of each kth constituent element’s AxBixCxDx parameters to derivatives wrt
X

JE, JE, dv, JE,

Ax, Ov, dx, - av, Ve (6:2.12)

where vy is the L, C, t2, or Zo of the kth network element, and E stands for
chain parameter A, B, C, or D.

The transmission line length variable, 0o, is functionally related to
the V space in order for cascade transmission-line (CASTL) lengths to be
constrained to 0<09<180° v (“for all”) v:

g v,v <1,

6 = 6.2.13)
T -1
5 (2 -V ), v>1.

Transmission-line stub lengths are constrained to 0<0¢<90° V v:

z v,v <1, SC Stub,
g =12 (6.2.14)

%(1 —v7),v>1,0C Stub.

Because of (6.2.13), (6.2.14), and the linear dependence of electrical
length on frequency, (5.4.11), the chain relationship equivalent to (6.2.12)
for transmission-line length has two additional terms:
dE, OJE, 80 24,
ox, 00 28, dv, &
These considerations lead to the summary of element ABCD parameters
and their derivatives in Table 6.2.1. Note that j=V(~1), and the four
column labels containing “/j” result in real coefficients.

(6.2.15)

6.2.3 Lossless Ladder Network Analysis Equations

Section 2.6.2 describes how the overall chain matrix of a cascaded
network is simply the product of each subnetwork’s chain matrix:

T(x) = L5, 5 T Ty s (6.2.16)

where Tk is the AxBrCkDix matrix of the kth subnetwork, k=1, 2, ... , K,
and x is the vector of variables in (6.2.10). Components AxByCkDx of
matrix Tk for the 12 kinds of element types are shown in four columns of
Table 6.2.1. It is useful to identify the overall matrices to the left and to
the right of the kth subnetwork’s matrix Tk in (6.2.16):

L=ThT,, Re=TpTy. (6.2.17)
The chain matrix is formed by starting with the unit matrix and
multiplying it consecutively as indicated, working from port 1 to port 2.
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Table 6.2.1. Element Parameters And Derivatives In V Space.

2
]
=
a
=]
=]
=
<
=

CON

A Ax Buj Cdi | De | AdAe AeBilj ACj Ay
1 cS C 1 | —1(C) 0 1 0 +1/(C) [ 0
2 LP L 1 0 ~1/(oLy 1 0 0 +1i(@L) 0
3 LS L 1 ol 0 1 [ oL 0 0
4 cp C 1 0 oC 1 0 0 oC 0
5 LCS L [ 1 QL 0 1 0 QL 0 0
6 LCP C [ 1 0 Qc 1 0 0 QC 0
7 XFMR t2 t 0 0 +1/t t 0 0 -1/t
8 | CASTL Zo o7 cosB Zosin Yosind cosf 0 Zosin® ~Yosind 0

8o ®o ~¥ 5ind Zo'Vcost Yo'¥cosf =¥ sinf
9 SCS Zo @ 1 Zotanb [\ 1 0 Zotand 0 0

8o @o 0 Zo¥/cos?0 0 0
10 SCP Zs @o 1 0 —Yocotf 1 0 0 +Yqcot@ 0

0o ®p 0 0 ~Yo'¥/sin?8 0
11 OCS Zo @ 1 —Zocotd 0 1 0 —Zocotd 0 0

B0 ®o 0 —Zo\Y/sin?0 [ 0
12 oce Zo ®o 1 0 +Yotand 1 0 0 —Yotand (]

8o @0 0 0 YoW/cos?0 0

2 o B, ,6, < xf2 CASTL & SC stubs,
st/(l—"’/z), 6=w8,, w=—, w20 _|7%% /
w; @, ox \w(n-8,),6, >n/2 CASTL & 8, < #/2 OC stubs .

Only four operations are required to add each subnetwork in Table 6.2.1,
except for type 8. Each other even-numbered type adds a series
reactance, Bk, so that

[AL B ka}_ 4, j(B,+4,3,) (6.2.18)
JC D o 1 ¢, D ~-C.B, ' B

Each odd-numbered type (except type 7) adds a parallel susceptance, Cy,

so that

4, jBT 1 0 A, - B,C, ‘B

[.L Jb, ' ]: - L I JO . (6.2.19)
JC. D {jG 1 J(CL"'DLCk) D,

The ideal transformer, type 7 in Table 6.2.1, is updated by

A B, |t O tA B, [t
eI o P s (6.2.20)
JC, D, |0 ¢t jtC, D[t
The cascade transmission line, type 8 in Table 6.2.1, has a full Tk matrix,
requiring eight operations for updating.
Derivatives wrt xx of the overall matching network’s ABCD

parameters (T) are related to derivatives wrt xx of each kth constituent
element’s AxBiCxDx parameters [Lobst]:

24 B
A T= ‘;"Ck g’g =L, xA, T xR,, (6.2.21)

(O% x|
where Ly and Rx are defined in (6.2.17), and AxTi is the matrix with
elements from the right-hand four columns of Table 6.2.1. The four
dependent partial derivatives found numerically by (6.2.21) are used in
(6.2.9) where AxE is required, E standing for A, B, C, or D.
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It 1s possible to obtain the exact partial derivatives of the ABCD
parameters of a lossless network in just one forward analysis (port 1 to
port 2) at a frequency, as in (6.2.16), using Tellegen’s theorem
[Cuthbert,1983:108]. Surprisingly, it is computationally cheaper and
conceptually simpler to find them from a second analysis made from port
2 to port 1 [Orchard]. In the first analysis, from port 1 to port 2, the L
matrices are composed subnetwork by subnetwork as described, storing
the four real values in each matrix, L. In the second analysis, from port
2 to port 1, the Rix matrices are likewise composed and the four real
values are used immediately in (6.2.21).

6.2.4 Lossless Ladder Network Analysis Algorithm

The fruit of the labor in Section 6.2 is to fill vector e with the errors
at each of the m frequencies; see (6.1.6):

e=le]=[P-g} i=12,-m (6.2.22)

When gradient optimization is required, it is also necessary to construct
the non-square (m>n) Jacobian matrix, J

AR AR A R
Ax|P2 A;‘;I)Z Ax,,PZ
AP AP A, P
J= AP, AP, AP (6.2.23)
LAx,Pm szpm Ax”Pm

The analysis sequence is:

1. For each frequency i, 1=1 to m, and its related constants Rg, Xs,
Ri, X1, precompute q and p (6.2.2), r (6.2.8), and all the other
coefficients in (6.2.7).

2. Assign values to the components of variable vector x, then
convert them to v by (6.2.10).

3. Assign a frequency, o=w; then compute Q and € for
transmission-line elements using (6.2.13), (6.2.14), and the
equations at the end of Table 6.2.1.

4. Start with the unit matrix, and multiply it consecutively from
port 1 to port 2 as indicated in (6.2.16)-(6.2.20), storing all Ly
matrices.

5. Use the ABCD obtained to evaluate (6.2.1), store (P; — gi) into e,
and evaluate and store (6.2.7).
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6. Start with the unit matrix, and multiply it consecutively from
port 2 to port 1 to evaluate (6.2.21).

7. Use those values in (6.2.9), and store the results in row 1 of
(6.2.23).

8. Ifi=m, go to 3, else stop.

6.3 Grid Search

The purpose of a grid search is to locate the likely global minimax
solution to within about 3 percent in the element parameter space. That
is a necessary starting point for the gradient-based method of multipliers
(Section 6.4). The grid search of vertices of large, medium, and small
hypercubes, each repositioned in the variable space, approximately
locates the hikely global minimax solution while avoiding local anomalies
in the envelope surface. Fortunately, considerable recent research
describes notation and convergence of such pattern-search algorithms
[Torczon,1991,1997}, [Dennis]. This section shows how the 2n-factorial
pattern search can be applied in GRABIM.

6.3.1 Minimax Objective Function

The smooth error function, e;, at each ith frequency is defined in
(6.2.22) as the difference between the transducer power function and its
goal value. However, the non-differentiable objective according to (6.1.6)
minimizes the maximum of such error functions. (Derivatives of the
envelope exist, but are discontinuous.) Each error, ¢;, is a function of the
vector of element parameters, v, and that in turn is related
logarithmically to the variable vector x, as stated by (6.2.10). The
minimax problem ultimately iterates on the variables in vector x.

The grid search evaluates functions at the vertices of hypercubes
centered at a sequence of iterates, x1, ..., &k, Xk+1, ... , where xx now
denotes the vector value of x at the kth iteration. The minimax objective
function at xx has a value, called best, which is set equal to the largest
error over the m frequency samples. It is important to note that at the
next iterate, xx+1, the frequency scan can be abandoned immediately upon
encountering any error greater than best from the preceding pattern
about xx. That reduces the required computing effort by about one half
on average.

6.3.2 Pattern Searches

Direct search methods for numerical optimization depend only on
simple decreases in a finite sequence of smooth or nonsmooth objective
function values. Direct search methods are not only derivative-free, they
do not model the objective function; e.g. they do not assume it is
quadratic. They are valued not for fast local convergence, but for reliable
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steady improvement. “The most important distinction, for theoretical
purposes, is between those methods for which the set of search directions
is modified at the end of each iteration and those methods for which the
set of search directions remains fixed across all iterations”
[Torczon,1991]. Probably the most popular direct search algorithm is
Nelder-Mead, which utilizes a simplex geometric solid which adapts in
size and shape after each iteration. Its deficiency is that it does not
search in each of n linearly-independent directions at every iteration, so
convergence cannot be guaranteed. It is known that Nelder-Mead
sometimes fails when the number of variables becomes large enough, e.g.
n=16.

A particular subset of direct search methods, pattern search
methods, have fixed linearly-independent search directions across all
iterations and have been generalized to include a global convergence
theory [Torczon,1997]. They are distinguished by iterates that lie on a
scaled, translated integer lattice and are backed by convergence theorems
that are borne out in practice by numerical tests. They are robust,
converging unfailingly to a point where the objective function is non-
differentiable or the gradient is zero. Members of the class of direct
search methods include

Coordinate search with fixed step lengths,

Evolutionary operation (EVOP) using factorial searches,

The original pattern search by Hooke and Jeeves, and

The new multi-directional search algorithm by Dennis and
Torczon.

GRABIM utilizes factorial search, a 1950’s method enhanced by
1990’s research. The several reasons factorial searches are mandatory
for broadband impedance matching become apparent in the following
description. EVOP, a statistical analysis technique, today goes by the
name Design of Experiments or DOE [Montgomery]. However, GRABIM
is similar only to the factorial search aspect of EVOP or DOE and
incorporates no aspect of chance. There has been at least one attempt to
combine pattern (Hooke-Jeeves algorithm) and random searches
[Bandler,1969].

6.3.3 Grid Geometry

Iteration is the process of selecting a value set sequence (iterates)
for variables and testing a set of function values in the vicinity. Figure
6.3.1 illustrates the variable space for two dimensions; it is still
representative when there are more than two dimensions. The space has
been discretized into 101x101=10201 values where the grid lines
intersect. Each grid point has integer coordinates in terms of 16x; and
16x2; e.g. the upper left-hand dot has integer coordinates (-29,+31),
representing x1—=—29/16=-1.8125 and x,=+31/16=1.9375. The choice of

© 0 © o©
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Figure 6.3.1. Granularity and hypercubes in a solution two-space.

factor 16 is made clear below. Some important integer and real values in
the variable (x) and parameter (v) are summarized in Table 6.3.1, using
the factor 16 and (6.2.10).

Table 6.3.1. Key Integer and Real Values in the X and V Spaces.

16x] -1 +1 -4 +4 | -16 | +16 | -36.8|+36.8 -50 | +50
x | -0.0625] 0.0625 | -0.25] 025 ] -1 +1 1 -231231-3121 312
v 1093941 1064510781 1281037 ( 27 { 01 ( 10 { .044 | 22.8

Consider the pattern represented by the central pattern of four
dots in Figure 6.3.1 located at coordinates (£16,+16). According to Table
6.3.1, parameters such as L, C, Zo, etc., have corresponding values of
v=0.37 and v=2.7. It is now useful to revisit Figures 5.4.2, 5.4.12, 5.5.5,
5.5.6, and 5.5.7. These display cross sections of the reflection envelopes
versus the parameter over a range from 0.1<vj<10.0; see Table 6.3.1 and
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the dashed rectangle in Figure 6.3.1. It is important that the initial
exploratory coordinates in the pattern are spaced widely apart to
avoid anomalies such as in Figure 5.5.7. The two-variable (n=2) case
in Figure 6.3.1 shows large, medium, and smail hypercubes having sides
of scaled lengths 32, 8, and 2, respectively. The 2n-factorial algorithm
“constructs a hypercube centered at the current iterate and then
computes the function values at the vertices to find a function value that
is strictly less than the function value at the current iterate. If a new
best point is found, the hypercube is then centered on the new best
iterate and the search is restarted. If not, the size of the hypecube is
reduced” [Torczon,1991]. The reduction shown in Figure 6.3.1 is by a
factor of four, performed only twice for clarity of the illustration.

In practice, it has been found that three reductions (four hypercube
sizes or cycles) are useful, starting at Ax=1. Thus, the normalization
similar to Figure 6.3.1 is to 64 instead of 16, and the final two factors in
V space are 0.9845 and 1.0157. Therefore, the X space in the domain
-3.125<x<+3.125 is discretized into 401 points in each coordinate. The
factorial search by no means visits all the 4017 grid points in multi-
dimensional n space. Example 5.6.1 utilizes the termination impedance
data in Table 5.4.1; the 26-factorial search with four cycles of Ax=1, 1/4,
1/16, and 1/64 converges in 0.01 minutes and visits 7026 points using a
200 MHz PC in safe mode (4 times faster than in Windows®). Indeed,
knowledge of the response surface (Section 5.4) makes visiting all 4010
points unnecessary, thus avoiding the “curse of dimensionality” in the
“vastness of hyperspace” [Wilde:279-281}.

The grid search is not just about searching along individual
coordinates, because all possible combinations of all coordinate trial
values are evaluated for every pattern. Those patterns should be viewed
as an archeological grid that is being repositioned and eventually refined
to locate an irregular minimum; see Figure 5.4.13. In that context, the
crude convergence of a grid search need only locate the neighborhood of
the minimum in order that the minimax-constrained gradient
optimization can carry on from there.

6.3.4 Grid Algorithm

A basis matrix, B, and a generating matrix, C, are required to
define a pattern search [Torczon,1997]. The GRABIM technique is based
on the benign properties of the function envelope in each coordinate
direction, so a strategic choice is B=I, the unit matrix. A generating
matrix contains in its columns all possible combinations of {~1, +1} and a
column of zeros; see Figure 6.3.1 for n=2. In that case,

1 1 -1 =10 631
C‘1—1—110' ©.3.1)
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If the current iterate, xx, is the center of a hypercube, a square in
Figure 6.3.1, then the qth exploratory step from there is

si=A, (6.3.2)
where Ax is the step length and cii denotes a column of matrix Cy:
G, =[eh el smel™). (6.3.3)

The 2n-factorial pattern search makes a series of well-defined
deterministic exploratory moves about the current kth iterate, xx:

Xpa=x{ +s{, g=1;-2"+], (6.3.4)

which 1ncludes the current iterate (hypercube center) as well, for
convenience.
As a further example, a generating matrix for n=4 is

r 11 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 90
co 1111 -1-1-1~-1-1-1-1-11T 1 1 1 0  (6.3.5)
11 -1 -1 11 -1 -1t -1-11 1 -1 -1 1 1 O
1 -1 -1 1 1 -1 -1 1 -t1 1t -1t -11 1 10
Generating matrices can be put in a standard form [Torczon,1997]:
¢, =[M, -M, L], (6.3.6)

where Ly is just a column of zeros in a 2°-factorial search. However, for
programming purposes, the combinations can be generated by nested
loops, as in Figure 5.5.4, which is equivalent to a tree diagram.

It is important to note that (6.3.4) is a vector equation; (6.3.2) and
(6.3.3) show that each row of matrix C corresponds to a variable
parameter in the matching network. Looking at (6.3.5), each row
contains n values that are +1 and n values that are -1. That means each
of the two possible element parameter values will be used n times at each
of m frequencies in the current exploratory pattern. Furthermore, when
those values are precomputed before each pattern is explored (static
inttialization), they can be tested then for any element parameter’s upper
and/or lower bounds. If any bounds are violated in the current lattice,
then the precomputed value should be coded (e.g., set to 999) so that
when encountered in the ABCD ladder network analysis, as in (6.2.18), it
will cause immediate termination (e.g., returning Pi=1E10). Finally, if
the precomputation finds a “hold” placed on a parameter, then the *+1 in
the C matrix can be replaced by 0 to maintain the nominal value of that
variable.

The algorithm for the 27-factorial pattern about the kth iterate
(center) is shown in Table 6.3.2 [Torczon,1997]. The function value f(xx)
is defined by (6.1.1), where P; in (6.1.4) can be substituted for p; without
effect.
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Table 6.3.2. Exploratory Moves in the 2v-Factorial Algorithm.

Given xx, Ak, f(xx), and C as in (6.3.3), set sk = 0 and best = f(xx);
Forgq=1to 2" do

(a) sk¥=Axct, xp9=x+sx4, and compute f(xx9);

(b) If f(xx9) < best, then best = f(xx9) and sk = si9;
Return.

The pattern searches are started in cycle 1 with A1 = 1.0 from the point
x=0 with best=f(0). That sequence of fixed large patterns (first cycle) ends
when best fails to change after a complete pattern. In practice, because of
the slow convergence of factorial searches, it is helpful to apply a relative
change tolerance of 0.001 so that the cycle ends when the change in best
is insignificant. Then the cycles are repeated with Az =1/4, A3 =1/16, and
Ag =1/64.

Examination of Figure 6.3.1 shows that some vertices of a kth, k+1
and perhaps subsequent patterns are duplicated. (By using factors of
four instead of two in reducing A, the duplication among cycles is less
likely.) Note the integer coordinates illustrated in Figure 6.3.1, 16x; and
16x2; a particular iterate is the center of one of four hypercubes defined
by (6.3.2)-(6.3.4). Therefore, the integer coordinates of each new
exploratory point can be listed efficiently during static initialization and
sorted with the stored points already explored to eliminate duplicate
function evaluations. Without this static test before each pattern is
evaluated, there would be at most about 100,000 function evaluations
consuming about 0.5 minute over the four cycles. Testing for prior
exploratory points in just the last several patterns is probably sufficient.
Aside from the memory required, complete testing is not likely to be
advantageous, because the effort may approach that required to obtain
function values.

It is noted above that both basis and generating matrices, B and C,
are required to define a pattern search. Then, the search directions at
each iterate are found from the matrix product BxC. For the K~-factorial
searches in coordinate directions, B=[, the unit matrix, so further
consideration of the basis matrix is not required; however, the next
section mentions a rotated, orthogonal basis matrix.

6.3.5 Other Factorial Search Algorithms

Figure 6.3.1. illustrates the 2»-factorial grid search. Section 5.5.2
compares the 3s-factorial grid search to the 27-factorial grid search,
where each pattern has 3" and 27 points, respectively. Before the
underlying reflectance behavior in coordinate directions was recognized,
Kn-factorial grid searches were studied, K=3, 5, 7, 9, and 11 [Cuthbert,
1994b]. For the fixed-pattern searches which do not use an adaptable
simplex, the number of points in the lattice is exponential in n, the
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number of variables. However, there are also advantages in more dense
lattices.

Lattices locate a minimum more precisely. See Figure 5.5.8;
exploration from the center is not just in coordinate directions. In Figure
5.5.8 in the 32 case, there are four search directions, while the 22 case
explores in only two directions (arguably). Clearly, the 52 case in Figure
5.5.3 explores in eight directions. This property produces a noticeable
effect, because each lattice is not allowed to rotate and, thus, better to
locate an irregular minimum (Figure 5.4.13). Although a precise location
of the minimum is not required of the grid search, it does shorten the
subsequent gradient search.

Perhaps the best strategy is to use more coordinate trial points for
lower numbers of network parameters (branches). Timing relationship
(5.5.3) shows that the dominant factor is the exponential relationship
involving NT, the number of grid trial values, and NB, the number of
branches or parameters: NTNB, Table 6.3.2 suggests a strategy.

Table 6.3.2. Number of Trial Combinations Versus NT and NB.

NB NT NTNB
31 961
9 729
5 625
4 1024
3
2

[«234 BN VIR V]

729
<1024

~1

-10

Such a strategy is easy to implement in the nested DO loops in Figure
5.5.4. The NT=31 points for NB=2 is probably an extravagant use of
memory, so that NT=9 would be a better choice in that case.

An additional enhancement at the end of the grid search is to
rotate, randomly or otherwise, the orthogonal axes of the final hypercube
for a few additional trials. Previous pattern search methods continually
utilized orthogonal search directions rotated randomly or speculatively
[Bandler,1972a}, [Wilde 312-3]. It is shown in Section 5.4.4 that non-
adaptive Kn-factorial grid searches avoid minor aberrations, some of
which might be local minima. In the neighborhood of the likely global
minimum, it is safe to compensate for the limited number of search
directions on the chance that a few coordinate rotations might refine the
location with little additional effort. Efficient computation of a set of
orthonormal directions corresponding to columns of a rotated basis
matrix, B, has been described [Himmelblau:161].

The multi-directional line search algorithm, listed in Section 6.3.2
as a member of the distinguished class of pattern search algorithms,
requires only a linear increase of exploratory points versus n; and B can
be any nonsingular matrix, including I [Torczon,1991]. It may be
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possible to employ that search algorithm in the GRABIM technique and
still avoid any envelope surface anomalies. However, the broadband
matching problem fundamentally limits the number of variables, so that
the factorial grid search phase should be allocated about the same time
as the minimax-constrained gradient optimization phase. In other
applications having large n, the multi-directional search algorithm
appears to be very attractive, especially using parallel machines
[Dennis]. ' .

6.4 Method of Multipliers

The broadband impedance matching minimax problem in (6.1.1) is
solved approximately by a grid search. Now, an exact solution of the
equivalent problem in (6.1.6), which shifts the effects of
nondifferentiability into a set of inequality constraints, is detailed. There
are many excellent references, particularly general surveys
[Fletcher,1974,1981b], [Ryan], and detailed mathematical descriptions
[Fletcher,1981a], [Bertsekas]. The method of multipliers and alternative
constrained optimization methods mentioned in Section 6.4.5 all depend
on the modern interpretation that Lagrange multipliers arise from
subdifferentiation of nonsmooth objective functions [Rockafeller,1993].
The method of multipliers is developed concisely to facilitate subsequent
computer programming.

6.4.1 The Problem

The general nonlinear programming problem is
Minimize f(x) s.t. h(x)=0 and c(x)20. (6.4.1)

The objective function f is a scalar function of the variable vector x, and
equality constraints in vector h and inequality constraints in vector ¢ are
also functions of x. All functions may be nonlinear in x. A very readable
and brief introduction to methods for solving the many practical problems
having the form in (6.4.1) has been published [Fletcher,1981b]. The
following sections detail the method of multipliers for solving this
problem and end with mention of several alternative methods.

Several authors express the inequality constraints as the opposing
inequality ¢<0; the difference is only a change of sign. Comparing
GRABIM problem (6.1.6) to (6.4.1), it is seen that f(x)=xn+1, an added
variable, and

e(x)=(g +xy)~ P, i=lm. (6.4.2)

H

This says that all constraints should be positive, i.e., all responses, P;,
should be less than their respective goals as floated by a minimal bias,
xn+1. Having related the specific to the general problem, the latter is
described in detail as it appears in optimization literature.
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6.4.2 Quadratic Penalty Functions

For the equality-constrained problem in (6.4.1), a s1mple penalty
function for equality constraints is [Courant]

F(x) = f(x)+ szl:[h, (x)] . (6.4.3)

The penalty is the sum of squared errors weighted by a scalar parameter,
s. If x(s) represents the minimizer of (6.4.3) for a fixed s, then it can be
shown that the solution? of (6.4.1), x*, is the limiting value of x(s) as
s—> . Numerically, the solution is obtained by the sequence of
unconstrained minimizations technique (SUMT), employing s = {1, 10,
100, ...}. Severe numerical difficulties occur, leading to increasingly poor
accuracy for larger value of s. A great deal of analysis was devoted to
overcoming that problem [Fiacco]l. The comparable approach for
inequality constraints is

F(3) = 70 + 53 [minfe, (), 0)] (6.4.9)

where the min() function selects the smaller of its two arguments.
Another, less troublesome, defect was thus added: The first derivative of
F is continuous, but the second derivative is discontinuous where ¢i(x)=0.

The method of multipliers avoids the requirement that s— « by
adding a term linear in c(x):

F(x)= f(x)=A7c+ gsi[min(ci(x), 0)] , (6.4.5)

where A is a vector of Lagrange multipliers, and there there is a
weighting element, s;, for each constraint, ci(x). This is the augmented
Lagrangian penalty function. In fact, the first two terms in (6.4.5)
constitute the classical Lagrangian function. The reason the method of
multipliers MUST start from a neighborhood of the constrained minimum
is that the first- and second-order conditions for the Lagrangian function
must be satisfied. Those conditions at the constrained minimum are that
its first partial derivatives wrt x are zero, and its Hessian matrix of
second partial derivatives wrt x is positive definite. @ When these
conditions are satisfied, there exist suitably large values of weights, s; in
(6.4.5), such that a solution of (6.4.1) exists [Fletcher,1981a:132].
Because f(x) is linear in this case, the second-order (curvature)
requirement reduces to the curvature of all active constraints being non-
negative in some neighborhood of the solution.

There is an expression that differs from (6.4.5) only by an amount
that is not a function of x [Cuthbert,1987:296-8]:

4 The * superscript in Chapter Six denotes optimal real value(s), not complex conjugation.
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m 2
F(x,s, u) =f(x)+ s [min(c,. (x) = u, 0)] , (6.4.6)
i=1
where the Lagrange multipliers at the solution, x*, can be expressed in
terms of finite weights, si, and offsets, u;, by

A;=su, i=1- m. 6.4.7)

“Each constraint has an associated Lagrange multiplier (at the solution)
which is conventionally zero if the constraint is inactive. The Lagrange
multiplier 1*; can be interpreted (to first order) as the rate of change in
F(x*) that would result from a perturbation in the constraint function ¢;”
[Fletcher,1981b].

Note that setting all w; = 0 and s; = s reduces (6.4.6) to (6.4.4).
More importantly, minimizing (6.4.6) obtains the same optimal variable
value, x*, as when minimizing (6.4.5). Unfortunately, the optimal
Lagrange multipliers, or the corresponding weights and offsets, are not
known in advance and must be found by a sequential process. These
Lagrange multiplier penalty functions were first developed for equality
constraints [Powell,1969], [Hestenes] and later extended to inequality
constraints [Rockafellar,1973].

6.4.3 Adjusting the Multipliers

It is first explained why the Lagrange multipliers, or the weights
and offsets according to (6.4.7), must be adjusted. Suppose the
corresponding sets of s; and u; have been assigned values; then F(x,s,u) in
(6.4.6) can be minimized, thus finding some value x = x’. That process
defines the function x'(s,u) and leads to a theorem [Powell, 1969]:

If the value of the variable, x, which minimizes F(x,s,u) is &'(s,u),
then x’(s,u) is a solution of the constrained problem

Minimize f(x) s.t. c(x)= c[x'(s, u)] , (6.4.8)

where all the constraints, c(x), are active (binding, equality)
constraints.

This is true because the summation term in (6.4.6) is constant for any
value of x satisfying the constraints of (6.4.8). Therefore, considering
only those values of x = ¥, the value of x which minimizes (6.4.6) also
minimizes f(x) subject to the constraints in (6.4.8) being satisfied
[Walsh:200]. This theorem is important because it states that only the
vector values of s and u need be found so that the right-hand side of
(6.4.8) 1s zero, i.e.

c[x'(s, u)] =0. 6.4.9) ‘

Therefore, the problem has been reduced to adjusting vectors s and
u to solve the set of nonlinear equations expressed by (6.4.9). Actually,
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the Lagrange multipliers at the ultimate solution, x*, are fixed values, so
(6.4.7) implies that only one vector, say u, need be adjusted. If the
weights, s, are sufficiently large, iteration k+1 on vector u is:

w = u — ofx (). (6.4.10)

The iteration in {6.4.10) can be made to have linear convergence at any
rate desired. (If second derivatives of F(x,s,u) were available, a quadratic
convergence could be obtained.) Correction (6.4.10) is applied unless it
happens that the maximum-constraint moduli ratio3, ||c®Df|_/{lc®] | is
not sufficiently small (0.25 or less was recommended). In that case,
certain weights, si, should be increased (a factor of 10 was recommended).
Once the weights, s;, become sufficiently large and ¢ sufficiently small,
the maximum-constraint moduli ratio will always pass the above test. A
detailed flow diagram for these adjustments has been published
[Powell, 1969:286].

A reliable initialization before sequentially minimizing (6.4. 6) is to
set all weights to unity, si=1, all offsets to zero, u;=0, and f(x)=xn+1 to the
infinity norm of the error vector, ¢ = [ei], where e; = (P; — gi):

X0 = "e”w = e,.l , i=ltom. (6.4.11)
With this initial value for the added variable, the constraint functions
from (6.4.2) are

a(x)=xy, ~¢, i=1,- (6.4.12)
Thls substitution. makes only a few of the constraints active (¢i<0) during
the first minimization, so that the objective function (6.4.6) is not
dominated completely by the summation.

Finally, the method of multipliers algorithm is summarized in
Table 6.4.1.

Table 6.4.1. Multiplier Penalty Method Steps to Minimize (6.4.6).

1. Initialize offset u=0, set si=1, and set added variable xn+1 to the
maximum error, e; = (Pi—gi), i=1 to m.

2. Minimize F(x,s,u) to find x'(s,u) and cf x'(s,u)].

3. Stop if lle(x)ll_ is suitable small, but if {|c(x')|l_ increased, go to
step 5.

4. If each |ci(x)] decreased by factor 4 or more, set u=u~c(x’) and go
to step 2.

5. Corresponding to each |ci(x')| not decreasing by factor 4, adjust
5i=10s; and u;i=ui/10, then go to step 2.

5 These infinity norms are defined as in (6.4.11).
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The minimizations are well scaled and require progressively fewer
iterations, with the weights seldom exceeding 1000.

6.4.4 Gauss-Newton Unconstrained Minimizer

This section describes an unconstrained minimization method that
is particularly well suited for step 2 in Table 6.4.1. It has many
advantages:

o Only first partial derivatives of F(x) are required,

o A positive-definite matrix of second derivatives (the Hessian) is
estimated,

o No memory of results from prior search directions is required,
o The line-search criterion is simple and back tracks intelligently,
o Variables can be bounded or held easily, and

o Final convergence is quadratic.

The unconstrained function to be minimized is restated from
(6.4.6) and (6.4.2):

F(x)=x,,, + r'r/2, rE[r;]: [\/sj(xﬁHl - P(x)+g, —ui)],i €4, (6.4.13)

where set A contains the integer indices of the o active constraints, i.e.
ci(x)<0; the residuals, ra, are the augmented errors at each frequency; and
divisor 2 1s added for subsequent notational convenience. The first
partial derivatives of F(x) wrt x are:

AF=Yr (M), j=1N; AN+,F=1+2J§:rn. (6.4.14)
a=1 a=1

The first N partial derivatives of ra wrt x;, (Ajra), are simply —A;PaxVsa by
differentiation of (6.4.13). The partial derivatives of P, are available from
the Jacobian matrix in (6.2.23). Therefore, it is straightforward to
construct the gradient vector, g, of function F(x), having constituents
according to (6.4.14). Holding a variable constant is accomplished simply
by setting its component in the gradient vector to zero. Also, a practical
computer program would be dimensioned to accommodate all possible
residuals, ri in (6.4.13). Then, those satisfying ri>0 are set equal to zero
so that they no longer affect the immediate search step, which is
described next.

A Newton search has two distinct phases. First, a search direction
is constructed, and second, a step in that direction, decreasing the
function value, is determined. A Newton step in variable space from
iterate point xr is a vector that has both direction and length
[Cuthbert,1983:124]:

dc=-H"' g, (6.4.15)
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where H is the Hessian matrix, composed of all second partial derivatives
of objective function F(x). The Gauss-Newton approximation of the
Hessian, including the Levenberg-Marquardt term, v, is

HxJ'J+vI, (6.4.16)

where [ is the unit matrix. This approximation is possible because of the
sum of squared residuals, rTr in (6.4.13); note that the second partial
derivative of xn+1 is zero. The normal matrix JTJ is square, symmetric,
and positive definite. The Jacobian matrix, J, is formed from the partial
derivatives of the residuals in (6.4.13); its negative is simply obtained
from (6.2.23), and a last column is added according to (6.4.14):

- 5
\/;1-A1P1 s Ay R _\/g

S, M8 - NS AP =4,

—J=| AP o SSALP =4S | (6.4.17)

Vs My o s AwP, —s, |

When scalar v=0, dx in (6.4.15) approximates a Newton step, and
when v - o« the step is an infinitesimal steepest descent. A superior
feature is to replace the unit matrix, I, by an adaptive diagonal matrix,
D2, that functions as an implicit scaling of variables [Cuthbert,1987:208].

The Gauss-Newton unconstrained optimizer solves a system of
linear equations to define each trial step, dx:

[s7+vD?]dr=07r —(00---01) (6.4.18)

where the right-hand side is the negative gradient, —g. A computer
program requires a number of strategic policies, e.g. how to increase
parameter v to decrease the step length when the dx step in (6.4.15)
produces an increase in objective function value. The matrix inverse
indicated in (6.4.15) is only symbolic; the system of equations in (6.4.18)
should be solved by matrix decomposition techniques. The reader is
referred to [Cuthbert,1987:209-214,421-425] for a detailed flow chart,
discussion, examples, and listing of the BASICA code for program
LEASTP (=2 in this application). Modifications to include the added
variable are minimal.

T
H

6.4.5 Alternative Constrained Optimization Methods

The literature describes many varied approaches for solving the
constrained optimization problem (6.4.1). The quadratic penalty
functions described in Section 6.4.2 belong to one of several sequential
unconstrained minimization techniques (SUMT) classes: they are
exterior-point methods characterized by their use of only infeasible
~(c(x)<0) points.
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The first provably convergent direct search method for nonlinear
programming has been applied recently to the augmented Lagrangian
objective function in (6.4.5) [Torczon:1999]. The particular outer
iteration in Section 6.4.3 that adjusts Lagrange multipliers does not
require derivatives and converges at a linear rate. The inner iteration in
step 2 of Table 6.1.1 is an unconstrained minimization; the Gauss-
Newton minimizer described in Section 6.4.4 converges exactly and at a
much faster quadratic rate. Torczon has proposed that a pattern search
minimization algorithm also be employed in the inner iteration; it would
converge linearly and is best suited for exterior-point constrained
optimization applications. It is claimed that successive inexact pattern
search minimizations can be tolerated, based on other recent research
[Conn]. No data are available to support this claim. Indeed, the grid
search described in Chapters Five and Six utilizes the objective criteria in
Table 6.3.2 to achieve the same approximate result. The more highly
convergent gradient-based multiplier technigue still is required to prune
network branches reliably and efficiently.

A more popular exterior-point technique is the sequential
quadratic programming (SQP) method, which applies Newton's method
(requiring second partial derivatives) to solve the nonlinear equations in
(6.4.9) that arise from the method of Lagrange multipliers. Both x and A
are iterated, using a linearization of both the gradient and the constraint
vectors to produce a sequence of quadratic programming (QP)
subproblems. The minimax problem solved using SQP has been reported
[Rustem], [Zhou]. The required second partial derivatives pose a serious
disadvantage.

Another SUMT class is interior-point methods, characterized by
their property of requiring constraint feasibility (c(x)=0) at all times.
They are often called barrier methods, and introduce two added
difficulties: the barrier function is not defined outside the feasible region,
and an initial strictly feasible starting point is required. Although
sometimes utilized for RF network design [Waren], they remained
unpopular until 1984 when N. A. Karmakar introduced a highly
successful barrier solution for linear programming. The re-examination
that his approach produced for both linear and nonlinear programming is
ongoing [Powell,1995], [Polyak]. It is not clear that barrier methods are
superior to quadratic penalty methods in any substantial way.

There are numerous other approaches for solving the nonlinear
programming problem, including exact penalty functions and feasible
direction methods [Fletcher,1981a], [Bertsekas]. The exact penalty
function method attempts to employ a single parameter-free optimization
to a solution, often involving nondifferentiable objective functions.
Feasible direction methods date back to at least 1960, and attempt to
maintain feasibility by searching from one feasible point to another along
feasible arcs. One popular method related to this class is generalized
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reduced gradients (GRG). In contrast, an appealing feature of the
multiplier method is the minimal need for sophisticated linear algebra
and multidimensional calculus.

A direct solution of the minimax problem in (6.1.1) uses a sequence
of least-pth error minimizations so that |lejly—llell, as p— o
[Bandler,1972b}; see (6.4.11). Starting with a gradient minimization
using p=2, sequential minimizations are restarted with p=4, 16, 256, ... .
To avoid eventual ill-conditioning and over- and under-flows, the least-
pth objective function is normalized to the largest sampled error, and
extrapolation of p to infinity is employed [Bandler,1975}. This approach
is limited because the minimax solution is only achieved when p— w«,
similar to the original SUMT difficulties with the earlier exterior and
interior penalty functions [Fiaccol.

6.4.6 Frequency Sampling Strategy

To return to the general problem of minimizing envelope functions
cited in Section 6.1.1, recall (6.1.1):

Minimize f(x) = maxl.e,pi(x) forxeR", (6.4.19)

where € means “belongs to”, and I is some infinite or finite set. In the
broadband matching problem, I is a set of frequencies, p; is the
reflectance (magnitude of a generalized reflection coefficient), and n is the
number of matching-network element values related to the variables in
vector x. The name semi-infinite programming (SIP) has been applied to
(6.4.19). From Figure 5.6.1, which relates to an example having
frequencies sampled at intervals of 0.1, one can imagine that some of the
function’s peaks and valleys might escape detection for samples spaced
too widely apart.

One solution is to sample by finite one-dimensional grids of
successively finer mesh sizes to guarantee convergence to a solution of
the semi-infinite problem [Hettick]. It has been suggested that, on the
domain [0,1], normalized frequencies be selected by

Q= {0, l, 2 27t (i—_ﬂ, 1}, ' (6.4.20)
949 q

where q, a positive integer, is progressively increased [Zhou]. Typically,
if ¢>>n, only relatively few of the many smooth constraints are active
(binding) at the solution. Only n+1 data points are required to fit exactly
an nth-degree polynomial, and more sophisticated interpolation theory
also can be applied as a sampling guide. The same could be said for
quadrature (numerical integration) theory, especially Gaussian
integration [Cuthbert,1987:201].

Note that these constraint functions are “sequentially related” in
that small frequency differences do not substantially alter the functions;
see Figure 5.4.2, for example. That relationship has led to both a direct
search scheme, called RIPPLE [Bandler,1969] and a gradient method
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applied only to the larger ripples [Bandler,1972a]. An iterative
procedure, with the designer closing the loop, also has been suggested:
Pick a set of samples, observe the characteristics of the solution,then pick
subsequent other sets of samples for revised solutions [Waren).

A much more thoughtful approach examines the condition number
of the normal matrix, J7J, in (6.4.18) [Zhang]. Zhang noted that a least-
squares solution for n variables employing at least m=2n+1 samples is
always possible, but the normal matrix might be far from the unit
matrix, [, by distance d = ||JTJ~{]|. Starting with many more samples, m,
than variables, n, and using the Frobenius norm, sets of row vectors from
J can be tested to eliminate those rows (samples) causing a large
distance, d. That is repeated until there are only n rows left so that <J is
nearly orthogonal.

Nevertheless, selecting a fairly uniform distribution of n+1 to 2n
frequency samples and checking the solution obtained is a reasonable
engineering technique.

6.5 Summary of GRABIM in Detail

The mathematical details for programming the grid approach to
broadband impedance matching (GRABIM) are summarized. The general
semi-infinite programming problem and the ordinary minimax problem
with a finite number of frequency samples are outlined in terms usually
employed in current technical literature. The transducer power function
is selected for the specific GRABIM problem because it is well scaled and
easy to manipulate mathematically, especially where partial derivatives
are involved.

Orchard’s ladder network analysis method is employed for both the
transfer function and all its derivatives. The primary space selected for
optimization is the natural logarithm of element variable space, x=Ln(v),
because of its excellent scaling and inherently positive element values.
Equations are summarized for all partial derivatives of the transducer
power transfer function wrt chain parameters and ultimately with
respect to x, where x is related logarithmically to each of the five kinds of
element variables: L, C, t2, Zo, and 0o. Those equations require the
numerical values relating the derivatives of the network’s ABCD
parameters to the derivatives of the element parameters. Details of that
algorithm are provided. Procedures for efficient computation and various
strategies to minimize run time are described.

The 2»-factorial grid search is related to current research of
pattern search methods; the hypercube lattice is described as a member
of that class. The basis and generating matrices are defined so that
efficient precomputation can reduce the search effort. The discretization
of X space within the range of all feasible solutions is shown to define 401
points on the line ~3.125<x;<+3.125 in each x; coordinate. Although very
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few of those points are explored, it is emphasized that initial exploratory
points in the pattern are spaced widely apart to avoid minor anomalies in
the objective’s envelope surface. Even 10 element variables could be
subjected to a grid search in less than 30 seconds, using a 200 MHz PC.

The approximate minimax solution obtained by the grid search is a
mandatory starting. point for the precise solution of the equivalent
constrained optimization problem available by the method of multipliers.
That problem is framed as in current literature and again related to the
specific GRABIM application. The major role played by quadratic
(exterior) penalty functions is emphasized, to make it easier to appreciate
the role of the Lagrange multipliers, which are central to the method.
The augmented Lagrangian penalty function is defined with specific
references to methods and the rationale for adjusting the two sets of
algorithmic parameters, the weights and the offsets. The sequential
unconstrained minimization technique (SUMT) algorithm is described in
a table, and reference is made to a specific flow chart in the literature.

This SUMT algorithm has an outer loop for adjustment of
weights and offsets by a simple iteration that converges linearly. The
important inner loop is a Gauss-Newton unconstrained optimizer that
converges quadratically. Its advantages over alternative methods are
listed and the main mathematical features defined. It utilizes the exact
first partial derivatives obtained from network analysis. The specific
transfer of numerical results is indicated, which involves the Jacobian
matrix and the related normal matrix to approximate the second partial
derivatives in a very significant way. The Gauss-Newton technique and
the automatic step control and scaling by the modified Levenberg-
Marquardt technique are outlined.

Alternative methods for solving the constrained optimization
problem are mentioned, especially the barrier (interior) penalty method.
The main advantage of the method of multipliers is that no second
derivatives are required. The other methods not only lack that
advantage, but have more sophisticated and perhaps obscure roots in
linear algebra and multi-variable calculus.

Finally, the strategy for determining the number and location of
frequency samples is discussed. Several different schemes in the
technical literature are mentioned, including simply involving the
intuition and judgment of the designer after evaluation of a nominal
design. It is concluded that selecting at least n+1 samples for n
variables, and perhaps as many as 2n samples, usually suffices if the
solution is tested to discover any shortcomings.
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Appendix A — Circle to Circle Mapping

Bilinear transformations occur throughout network theory, mainly
because circuit connections require bilinear operations, i.e. inversion,
rotation, and scaling of complex quantities. Even conversion
relationships among impedance, admittance, and scattering formalisms
are’ bilinear. Bilinear mappings from a rectangular plane into and
between unit circles are utilized in two ways in this book:

o Network input reflection behavior as a function of each element
parameter (Section.5.4.3), and

o Impedance neighborhood size as a function of radial location in
a unit circle,

The following development extends that previously presented
[Cuthbert,1983:370-2].

A.1 Bilinear Mapping

All bilinear functions that map the Z domain into the w range have

the form
a,Z +1 Z+Z,

where all the quantities are complex and the asterisk (*) denotes
conjugation® {Cuthbert,1983:242]. The function w might be a network’s
generalized input reflection coefficient, and Z might be the impedance of
one branch at a particular frequency. Three pairs of (w,Z) complex data
are sufficient to determine the three complex coefficients ai, ag, and as.
There are simple relationships for U, T, and Z¢ as functions of the three
ai coefficients. Note that the rational bilinear expression following the
complex constant U is also a generalized reflection coefficient.

Bilinear transformations map circles into circles, and lines are
included as circles with infinite radius. Bilinear transformations also
preserve angles of intersection.

A.1.1 Right-Half Plane to Circle Mappings

Figure A.1.1 shows a rectangular Z plane and two reflection
planes, f and g, each containing a unit circle about its origin. Functions
F(Z) and G(Z) map the right-half Z plane (RHP) into unit circles in the
and g planes, respectively. Those two transformations are

f=F2)=

(A.1.1)

2721 peit (A.1.2)
Z+Z/

§ In this appendix, the * superscript conjugates complex values, in contrast to Chapter Six.
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Figure A.1.1. Bilinear transformations between the Z plane and unit circles.

The real parts of the two normalizing impedances, Zs and Z;, must be
strictly positive (nonzero). The Z plane in Figure A.1.1 shows the point Zs
and its conjugate, Z¢'. These mappings define generalized Smith charts.
Because these mappings are 1:1 and reciprocal, the left-half Z plane maps
into the regions outside the unit circles in the f and g planes. The centers
of the unit circles are the points where =0 and g=0, implying that those
points represent Zf and Z;, respectively. In particular, these
transformations map the Re Z = 0 line (the Im Z axis) onto unit circles.
Reciprocal functions are easily derived. For example, (A.1.2) can be
solved for Z:
gy

Z=Ff)= 7 (A.1.4)
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Al12 Circle to Circle Mapping

Bilinear functions that map unit circles into unit circles must have
the form [Churchill]
S -5

g:E(f)Zejrl—_fﬁ) *

where [fo|< 1. Although (A.1.3) shows the g-plane origin, (A.1.5) also
shows that it corresponds to f=fy. Therefore,

-

Z.-Z .
fo=FlZ }=-£ L= Me” . (A.1.6)
0 ( g) Z,+Z,

Figure A.1.1 shows that f=f=F(Z;") in the f plane is the image of the g-
plane origin. Also note that
=|o{z;)

v =|r(z)
A.2 Interior Circular Images
Most useful bilinear transformation features usually involve

corresponding images of lines and/or circles that appear in the domain
and range.

(A.1.5)

) A1D

A.2.1 Concentric Circle in a Unit Circle

Consider the concentric circle about the f-plane origin in Figure
A.1.1. According to (A.1.2), it is the locus of all points where | f]=R<1.
The inverse transformation in (A.1.4) can be used to show that the
concentric f-plane circle has an image in the Z plane that has geometric
symmetry about the line through Z¢* in the direction of Re Z. See Figure
A.1.1: the Z-plane image is reflected about Z=Zf+oc, where o is real and
—00<g<+0o0,

The Z-plane circle in Figure A.1.1 corresponding to |fl=R is
commonly observed when Z¢ is purely real; then the circle’s center is on
the real axis, the f plane is an ordinary Smith chart normalized to some
resistance Ry, and the two corresponding images in the f and Z planes are
said to be constant standing-wave ratio (SWR) circles. It is not surprising
that in the general case the “SWR” circle is displaced vertically by exactly
~Im Zf, where “Im” means “the imaginary part of ”. For Z=R+jX and
Z=RetjXs, the imaginary parts of both the numerator and denominator of
(A.1.2) are just X+X;. When Z¢is real, X¢= 0.

A.2.2 Eccentric Circle in a Unit Circle

Another important image of the concentric circle about the f-plane
origin appears in the g-plane in Figure A.1.1. The eccentric circle may or
may not encircle the g-plane origin. The central point G(Zf") is the image
of the f-plane origin, f=F(Z¢)=0; see Figure A.1.1. The angle of the radial
through the g-plane image is shown in Figure A.1.1, where
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§=Zarg(2;+zf). ’ (A.2.1)

The g-plane image is symmetrical about this radial. The maximum g-
plane image modulus is [Cuthbert,1980) '
M+ R

eluw. = T3 7%

where R is fixed as in (A.1.2) and M is found from (A.1.7). The minimum
g-plane image modulus is

(A.2/2)

_ M-R
min T}~ MR

le (A4.2.3)

A.2.3 Neighborhood Parameters

The Thevenin central-point impedance G(Z¢*) in the G plane can be
re-normalized to the origin of the f plane. Next, Zs* can be determined
from the size and location of the reflection-chart circle image, which is an
impedance neighborhood.

For example, suppose that the reflection circle in the g plane in
Figure A.1.1 is normalized to 50+j0 ohms. Then the g-plane eccentric
circle corresponds to the concentric circle about Zs* in the Z plane as in
Figure A.1.1, and the f-plane concentric circle has an SWR circle image
(not shown) in the Z plane, centered on the Re Z axis. The neighborhood
of impedances in the g plane can be transformed to an SWR neighborhood
about 50 ohms in the f and Z planes by a lossless network matching
impedance Zfto 50+;0 ohms. This transformation exploits the
conservation of power (invariant reflectance), described in Section 2.1.4,
and is a statement of the invariant Poincaré metric used by
mathematicians [Helton].

Incidentally, this concept can also be extended to finding the
normalizing load impedance Z¢* that allows two given load impedances,
Zon and Zog, to produce a given reflection phase change while maintaining
the same reflection magnitude. Then, designing the lossless network
matching Z¢* to 50+j0 ohms is a part of designing hybrid phase shifters,
because the phase change is preserved at both ports of the network
[Atwater].

The first of three relationships is provided to simplify finding
radius M when the location and size of the eccentric circle in the g-plane
of Figure A.1.1 are given. The parameters are Reen, the vector length to
the arithmetic center of the image, and Reir, the radius of the image circle;
see Figure 5.4.5. Eliminating R from (A.2.2) and (A.2.3) yields

1+R2 - R

M=B-,B*~1 whereB_—ZTﬂ, R, >0. (A2.4)

This function is plotted in Figure A.2.1. When Z;=50+j0, the g-plane is
an ordinary Smith chart. To match a neighborhood of impedances
optimally at a frequency, M is found from (A.2.4) to locate the point
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Figure A.2.1. Radius M in the g plane versus Reen and Reir.

G(Z¢"); see Figure A.1.1. Then Zf" is read directly from the R and X chart
loci at that point. Any lossless network that matches Z¢ to 50+j0 at that
frequency will transform the given neighborhood of impedances into an
SWR circle having minimum radius R in the f-plane, Figure A.1.1.

The second relationship provides the radius of the matched SWR
circle, R, in the f-plane Smith chart. Again, (A.2.2) and (A.2.3) are used
to find Rqir in terms of R and M and then to find

l—Mz
(g2
1 —_— . . . .
R*——M( K+ —K), where K = Rm, R, >0 (A.2.5)

This function is plotted in Figure A.2.2 and shows R versus Rcen with
families of Reir. That shows that R>Reir, which is increasingly true as Reen
increases. Nevertheless, reflection magnitude R is the least possible
radius of a matched concentric neighborhood.

The third relationship is an alternative view of R>Rcir, obtained by
solving

(r? —1)+\/(R2 i) +4R2, R’

M= > , and
2R R A.2.6)
R(1- M)
cen 1___ MZ RZ .
Figure A.2.3 shows Reir versus Reen with families of constant R.
Reflection magnitude R can be converted to SWR using

1+ R

SWR = (A.2.7)

1-R’
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Figure A.2.3. Neighborhood radius Rcir versus Reen and f-plane radius R.

The method in this section can also be applied to conjugate matching to a
complex source as well. In that case, the SWR in (A.2.7) is a valid
mapping but does not relate to standing waves on a transmission line.
Broadband impedance matching does not match exactly at any
frequency in the band. Therefore, the matching to complex source
impedances is inexact, resulting in a cluster of circles of different sizes at
different frequencies, each somewhat off center from the complex Smith
chart origin. The goal is to contain these circles within the smallest
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possible circular corral centered on the chart origin. See the numerical
example in Section 5.6.3.

Example A.2.1. A neighborhood of impedances having a radius of 0.306
1s centered at a radius of 0.269 on the 118° radial on a 50+j0 ohm Smith
chart. Problem: Find impedance Z¢that must be matched to 50+j0 chms
and the SWR about 50 ohms when matched. Solution: Refer to Figure
A.2.1 with Reen=0.269 and Rci:=0.306 to find M=0.30. Plot 0.30 at angle
118° on a 50-chm Smith chart and read the R+jX: Z¢{=33.2+j19.9 ohms.
Therefore, a lossless network that matches 33.2+4j19.9 to 50+0 is
required. Enter Figure A.2.2 with Reen=0.269 and R.i=0.306 to find
R=0.33; according to (A.2.6), that corresponds to a SWR of 2.0:1. The
conclusion is that the given neighborhood of impedances can be centered
on 50+j0 ohms within a 2:1 SWR circle at that frequency.

A.3 Planar Lines to Circles

So far only circles in the Z plane are considered. There are two
important cases of lines in the Z plane, other than the jX axis, to
consider.

A.3.1 Constant Resistance
See Figure A.3.1. In the Z plane, point Z¢ is mapped to the center

/‘ g Plan.e
ImZ
Z Plane
Z;
Re Z
\ fPlane

Figure A.3.1. Constant resistance loci about Z¢" in three planes.
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of the f plane. It is important to locate the locus in the f plane when a
pure reactance is added to or subtracted from Z¢", i.e. the locus of Re Z =
Rt. Note that (A.1.2) shows that the point Z = j o maps into f=1+j0, and
that the f-plane locus must be a circle, as shown in Figure A.3.1. The f-
plane circle must map to the g-plane so as to be tangent at some point on
the unit circle, as in Figure A.3.1, a situation distinctly different from the
interior circle image in Figure A.1.1. These two points in (A.2.3) show
that gmin=M. Furthermore, the area between Re Z = Rrand Re Z = 0
maps inside the f-plane circle. Therefore, (A.1.6) shows that f is inside
that region when Ry<Rf, which is the condition for encirclement of the g-
plane origin.

A.3.2 Constant Q

The last case considers an impedance of variable magnitude and
constant angle, i.e. constant Q, as shown in Figure A.3.2. The line in the

f Plane

[
/[mz
Z Plane
O
Re 7
=S

f
=

Figure A.3.2. Images of impedances having constant Q in three planes.

Z plane starts at Z=0 and extends to Z — o, two points that appear in the
f plane where the unit circle intersects the real axis. The circular arcs in
the f plane are well known as lines of constant Q in the Carter charts, the
less well-known polar variation of a Smith chart. The corresponding
images in the g plane are circles that are partially within the unit circle
and have intercept points in common.
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A.3.3 Eccentric Vector Magnitude

See Figure 5.4.5. It is informative to quantify the behavior of | p|
as the vector that terminates on the g-plane circular images in Figures
A.1.1, A3.1, and A.3.2 versus variable f-plane angle, Z-plane reactance,
and impedance magnitude, respectively. This would not be difficult if the
three ai constants in (A.1.1) were known. In most cases, two pairs of
(Z,w) data are readily available, e.g. Z=0 and Z=w in Figure A.3.2.
Certainly a third data pair could be obtained, so that the exact bilinear
transformation at that frequency would be known. Then | p(Z) | would be
determined for all values of Z,however constrained, 1.e. on an SWR circle
inZ oron ImZ, or on |Z . Otherwise, it may be sufficient to know that
there are certain extrema of lpl and that |p | varies in a benign manner,
especially that there is a monotone relationship between reactance, X,
and angle ¢ in Figure 5.4.4. See Section 5.4.3.
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Appendix B — Abbreviations and Symbols

wrt  With respect to

€ Belongs to

v For all

s.t.  Subject to

n Filter coupling reactance

A, _ﬁ% , Partial derivative operator

Re  Real part of a complex number

Im  Imaginary part of a complex number
AN Integral division operator

- Approaches

o Infinity

IT Product operator

® Radian frequency, rad/sec

®o Reference frequency; usually unity

O ith frequency sample

0 Angle
) Angle at reference frequency wo
o Generalized reflection coefficient
p Reflection coefficient
r Reflection coefficient
A Lagrange multiplier
¢ Angle
Complex conjugate operator (superscript)
F(x) Scalar function of a vector variable
g ith prototype network element (except Chapter Six)
gi Goal (target) at the ith frequency (Chapter Six)

P Inverted transducer power function at frequency o;

w Lagrangian residual offset variable at frequency o;

v Column vector of element values in the V space

Vk kth element in column vector v

wi Penalty function weight on ith residual at frequency w;
x Column vector of element values in the X space

ak Value of x at kth iteration

x0 Initial vector of starting values for optimization

x’ Variables vector after a minimization in SUMT

Final optimal value of variables vector

Zs Source impedance

Z1, Load impedance

Zo Characteristic impedance of a uniform transmission line
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Overview, 133
Objective, 134
Brune functions, 98
Butterworth response, 19
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Cauer
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Realization, 98
Topologies, 30

Central point of eccentric circle
image, 197
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Response, 18
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filters, transmission zeros, 90,
93

Computing
Math operations count, 176
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S parameters to normalized
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Coordinate searches, 181
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Coprocessors, speed, 151
Coupling, constant reactance, 48
Coupling coefficients
Bandpass, 48
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Lowpass, 48
Measured on Smith charts, 87
Cross section, reflectance, 100,
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Denormalizing element value, 39
Derivative, partial
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Shorthand notation, 173
Design of Experiments (DOE),
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Determinant of lossless network,
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Diagonal location factor, 146
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Dipoles, 38

Direct search methods
Definition, 178
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Direct-coupled filters
All coupling topologies, 71
Design Example 3.3.1, 57
Example 3.3.5, 62
Overview, 47
Prior technology, 47
Prototype, 49
Topologies, 49
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Dissipation
Effect on analysis speed, 151
Effect on input resistance, 61
Effect on filters, 49
Midband loss, 61
Resonator, 26
DO loops, 153
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Anomalies, 37, 123
Between active devices, 131
Example 5.2.1 requiring source
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Real-frequency technique, 129
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Using Brune functions, 130
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Efficiency, 15
El section matching
Example 5.1.1 for resistances,
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Example 5.1.2 for impedances,
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Element numbering, 27
Element Response
Overview, 99
Single-match Example 4.4.2,
103
Eliminating PB Distortion, 65
Elliptic-function filter, 27, 71
Example 3.5.4, 82
Type b, 83
Type ¢, 91
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End coupling
Effect on stopband selectivity,
57
Example 3.3.2., 59
Narrow band, 50
Undistorted wide band, 65
Envelope function, 171
Aberrations or anomalies, 146
Definition, 101
Reflectance cross sections, 146
Unimodal or monotonic, 143
Equal-element response, 19
Equations, linear, 40, 42
Equations, nonlinear, 187
Evolutionary Operation (EVOP),
179
Exact derivatives, 108
Exact penalty function, 191
Exploratory step, 182
Exterior-point methods, 190
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Factorial search, 179, 183
Feasible direction searches, 191
Feasible region
Example 3.4.1 for three
resonators, 74
In parallel resistance space,
74
Log graphs, 77
Narrow band cases, 54
On a line, 73
Vanishing elements, 77
Filters
All-pole, 19
Antimetric, 107
Classification, 99
Degree, 94
Symmetric, 106
Flat load, 43
Flat loss, 36, 91
Flowchart, ALLCHEBY, 36
Foster realization, 98
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Gain bandwidth, 103, 118, 119
Gauss-Newton step, 190
Generalized reduced gradients
(GRG), 192
Geometric mean
Passband center frequency, 18
Geometric symmetry, 86
Of Z-plane circle image, 197
Trap, 70
Geometry
Eccentric circles, 137
Gewertz procedure, 129, 130
(Global minimum, 153
Goal (target) loss, 172
GRABIM
Algorithms, 148
Four innovations, 131
In detail, 171
Introduction, 112, 131
Prunes candidate network to
full rank, 162
Thesis, 132
Granularity, search, 153, 156
Grid base point, 153
Grid Search
Base point, 153
Convergence, 157
Detailed overview, 152
History, 178
Non-speculative, 157
Premature failure in frequency
scan, 153
Group delay, 29, 85, 98
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Hilbert transform, 43, 126, 128,
130
Holds on variables, 182
Hurwitz polynomial, 131
Hypercube
Diagonal, principal, 136, 146
Sizes in cycles, 181
Trial pattern Ex. 5.5.1, 156.
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Tll-conditioning
Least-pth objective function,
192
Weights, quadratic penaly
function, 186
Images
Constant Q, 202 ,
Constant resistance, 201
Preserved angles of
intersection, 195
Impedance
Conjugation, 10
Neighborhood examples, 134
Open-circuit parameter, 129
Positive definite, 130
Initialization, static, 183
Input impedance
Cascade transmission line with
load, 117
Function of ABCD and load, 43
Inverter with load impedance,
52
Transmission-line stubs, 150
Input resistance, computing for
Mismatch, 60
Singly-terminated filters, 60
Insertion loss definition, 15
Interior-point (barrier) methods,
191
Interstage network
Distributed Example 5.6.2, 164
Lumped Example 5.6.3, 165
Inverse Chebyshev response, 22
Inverter
Characteristic Zg, 52
Every lossless subnetwork, 53
Ideal, 49, 51
Trap, 53
Iterated analysis
Accuracy, 109
Example 4.5.1, 110
Overview, 105
Iteration, 179
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Jacobian matrix, 109, 177

—K—

Knot (joint) in envelope, 101,
157, 158

. g

Lagrange multiplier
Associated with constraints,
172
Related to weights and offsets,
161
Sensitivity (shadow price), 161
Lagrangian function, 186
Laplace s-plane, 49, 130
Lattice
Number of trial points, 155
Two-dimensional example, 5x5,
152
Typical patterns in two-space,
180
Levenberg-Marquardt in Gauss-
Newton steps, 190
Likely global solution for three
networks from Example 5.6.1,
163
Load, flat, 14
Load Q, 28
Loaded Q
Definition, 25
From input reflection delay, 86
Measuring techniques, 124
Loss at dc, 21
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Mapping

Applications, bilinear, 195

Bilinear, 12

Bilinear inherent in networks,
137

Bilinear, CASTL length
parameter, 141

CASTL length from v to 6o, 175
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Circle to circle, 12
Frequency, 97
Frequency, LP to BP, 29
Half plane to circle, 12
Lowpass to bandpass, 19
Smith chart, 9
Transmission line lengths, 145
Variables in log (dB) space, 145
Variables in domains and
ranges, 145
Matching
Conjugate, 9
Impedance neighborhoods, 165
Networks overview, 112
Single frequency, 113
Using cascade transmission
lines, 118
Using el sections, 114, 115
Using Pi sections for
resistances, 116
Matrix
ABCD of ideal inverter, 51
Basis, 181, 183
Generating, 181, 183
Hessian, 190
LU factorization, 109
Multiplication rules, 42
Normal, 190, 193
Notation, 41
Rotation for orthogonal search,
184
Max operator, 159
Maximally flat, 19
Method of choices, 75
Method of multipliers, 185
Adds a term in objective, 186
Augmented Lagrangian
function, 186
Algorithm in detail, 188
Initialization, 188
Midband
Dissipation, 26, 37
Voltages and currents, 31
Loss, Example 2.3.2., 26
Mismatch loss (R1#Rz), 60



Minimax
General problem and solution
statements, 171
Objective function, 103, 135
Objective with added variable,
160
Problem solved by SQP, 191
Reformulated with added
(float) variable, 158
Specific matching problem
statement, 172
Minimax reflectance surface
in two-space, 144
Minimizer, Gauss Newton, 189
Minimum
Reactance, 15, 45
Susceptance, 15
Inferior in reflectance envelope
function, 154
Minimum-loss response, 19
Mismatch loss, 15
Multi-directional line search, 184

—N—

Neighborhood
Clusters, 200
Impedance, 134, 198
Global minimum, 153, 157
Neighborhood, impedance, 198
Network
ABCD subnetworks, 175
Analysis, 40, 108, 177
Augmented for neighborhood
matching, 166
Automatic description, 148,
150
Candidate, 135, 148
Dissipative, 14, 19
Doubly terminated, 13
Double Norton candidates, 150
Dual, 27, 32, 34
Elements, 12 types, 149
Internal reflectance interfaces,
139
Linear, definition, 40
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Lossless ABCD parameters, 42
Lowpass prototype, 27
Pruning branches, 136
Reduced-degree, full rank, 157
Singly terminated, 15
Topologies, 27
Voltage/current extremes, 14,
31
Newton search, 189
Node-voltage phases, 66, 81, 87
Nomographs, filter response, 22
Nonlinear programming, 185
Norton
Equivalent source, 17, 27
Transformation, 65
Null frequencies, 53, 71, 92
Assignment order in synthesis,
99
Trap reactance in terms of, 151

—O—

Optimization, nonlinear, 109
Gradient for fast convergence,
158
In spreadsheets, 76
Newton iteration, 109, 189
Non-smooth, 171
Over-coupled response, 19

—P—

Parallel branch ABCD
parameters, 139
Parallel resistance space, 53, 72
Parameters
ABCD (Chain), 40
Scattering, 42
Passband
Center frequency, 18
Distortion due to inverters, 62,
64 :
Edge frequencies, 18, 94
Lowpass normalization, 20
Peak and valley frequencies,
95
Width, 57



Pattern center (base point), 182
Penalty function, 172
Augmented Lagrangian, 186
Exterior, 172
Interior, 191
Quadratic (exterior), 172, 186
Permutation of elements, 99
Pi-to-T transformation, 33
Piece-wise linear function, 126
Poincaré metric, 198
Positive element values, 53
Maintained by log
transformation, 109
Powell's theorem, 161
Power
Available from source, 43
Current, 116
Infinite from ideal source, 16
Maximum available, 8, 10, 42
Net entering port, 42
Range given load SWR, 12
Reactive, 25
Real, 25
Transfer, 8, 134
Transfer in lossless network,
14
Waves, 11, 42
Precomputation, 182
Predistortion, 49
Product method in synthesis, 97
Program
ALLCHERBRY, 6, 36, 60, 62, 124
CHOICES, 7
CONETOPM, 6
DENORM, 6, 39
Elliptic filter design, 83
Pole placer, 96
RIPFREQS, 6, 94
S11TOZ, 6, 133
Prototype, 27
Bandpass, 28
Direct-coupled network, 31
Element values, 19, 35
Elliptic-function, LP, 28, 38
Immittances, 29
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Normalization, 35
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Q (quality factor)
Bandwidth, 18
Doubly-loaded, 30
Load, 102
Loaded, 24
Singly-loaded, 29
Source, 102
Stress magnification, 26
Terminal, normalized, 48
Unloaded, 26

Quadratic programming (QP),
191

Quadrature (numerical
integration), 192

—R—

Random searches, 179
Ratio
Element values, 31, 32
Ideal transformer turns, 34
Reactance
Network branch effect on
reflectance, 136
0dd function of frequency, 45
Parallel, 25
Reactance transformations, 29
Real-frequency technique
Features, 125
Introduction, 112
Reciprocal functions, 196
Reciprocity theorem, 16
Recursion equations, 122
Reference voltage, singly-
terminated network, 16
Reflectance
Cross section, 136
Definition, 14
Element response, 100
Filter Example 4.4.1, 100
Invariant, 198
Monotonic, 139



Reflectance (Continued)
Related to transducer power
function, 172
Skewed arc of a curve, 137
Subnetwork interface, 139
Transformer, ideal, 141
Trap branches, 140
Unimodal, 140
Unit, branch relationship, 138
Zero for single-frequency
matching, 113
Reflection, transmission line, 10
Reflection coefficient, 100
Generalized, 9, 113, 134, 195
Real and imaginary parts, 9
Smith chart, 20
Reflection mapping, transfer
phase change, 198
Relative-change stopping
tolerance, 183
Residual error, 159, 189
Resistance
Even function of frequency, 44
Parallel, 24, 32
Rational function, 126
Resonator
Coupling concept, 48
Direct-coupled, parallel, 31
Efficiency, 26
Exact replacement, 68
In direct-coupled filters, 49
LC, 26, 50
Loaded Q, 25
Parallel (nodal), 35
Replacing external series
resonator, 68
Replacing internal series
resonators, 69
Replacing internal trap
resonators, 70
Resonance frequency, 25
Series (mesh), 35
Slope equivalence, 51
Stagger tuning, 65, 67
Stored energy, 25
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Response
Bandpass shape, 18
Butterworth, 19
Chebyshev shape, 18
Effects of dissipation, 23
Elliptic function, 22
Equal-element, 23, 35
Group delay in BP filters, 29
Inverse Chebyshev, 22
Lowpass, 17
Major shapes, 17, 19
Reflectance surface, 143
Open-circuit voltage, 16
Short-circuit current, 16
Voltage transfer ratio, 16

Return loss
Definition, 14
Gain-bandwidth limitation,

119

RF transformer, 32, 33, 80

Ripple, 36, 91

Rotated basis matrices, 184
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Sampling, frequency, 134, 192
Scaling
CASTL T equivalent branch
reactances, 146
Frequency, 39
Impedance, 39
Rules, 39
Response surface, 145
Scattering parameters, 42
In double matching, 131
In terms of ABCD parameters,
43
Normalization, 42
Secant search, 94
Selectivity, 3, 17, 32, 45, 47, 53,
55, b6, 57, 59, 62, 70, 71, 76,
83, 88, 94, 95, 96, 98; 105, 110,
127
Asymptotes, 55
Passband, 94
Stop band, 55, 95




Semi-infinite programming (SIP),
171, 192
Sensitivity
Bode, 101
Element value, 97
Lagrange multiplier, 187
Polynomial coefficient, 97
Root, 97
Sequential unconstrained
minimization technique
(SUMT), 186, 190
Sequential quadratic
programming (SQP), 172, 191
Series branch ABCD parameters,
139
Shadow price, 161
Single-match
Dependent source resistance,
122
Overview, 120
Main result, 121
Singly-terminated filter
Example 3.5.2, 79
Smith chart
Center, 9
Description, 9
Generalized, 12
In fplane, 199
In measuring loaded Q, 125
Normalization, 9
Reflectance behavior for
broadband matching, 137
Transmission-line application,
9
Source
Ideal, 15
Q, 28
Spectral factorization, 97, 131
Spreadsheet
Applications, 75
Example 3.5.1., 78
Example 3.5.2., 79
Example 3.5.3, 80
Optimization feature, 76, 83
Subroutines, 83
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Stagger tuning, 65, 67, 87
Standing-wave ratio (SWR), 11
Circle in impedance and
reflection planes, 197, 199
Relation to reflection
coefficient, 11
Voltage/current extremes, 14
Without transmission line, 12
Starting vector in
iterated analysis, 109
Stopband ripple, 22
Subnetworks
Cascading, 41
Summaries
Comprehensive equal-ripple
filters, 110
Direct-coupled filters, 87
Fundamentals, 45
GRABIM in detail, 193
Matching networks, 167
Superposition principle, 40
Symbols, 204
top coupling, 32
Symmetric filters, 106
Synthesis
Approximation problem, 97
Cascade, 98
Continued fraction expansion,
98
~ Polynomial, 35
Underlying concepts and
operations, 96

—

T equivalent network, CASTL,
146

T-to-P1 transformation, 33

Tellegen’s theorem, 177

Terminations, unequal, 21, 36

Thevenin
Equivalent source, 14, 17, 27
Impedance, 14

Time for lattice pattern search,
156

Topology, 27




Distributed interstage
network, 165
El section, 114
Element type codes, 149
Elliptic branches, 38
Permutations, element, 99
P1i section, 33 ,
Reduced-degree, full rank, 148
T section 33
Transducer function, 90, 106,
120, 129, 172
In terms of ABCD, 134
Inverted, power, 173
Power gain, 9
Transformation
Bandpass network, 32
Bilinear, 12
Frequency, LP to BP, 29
Geffe's, 71
Norton, 33
Pi-to-T, 33
Reactance, LP to BP, 19
Series-to-parallel resonator, 52
Star-delta, 33
T-to-Pi, 33
Transformation Q, 117, 167
Transformation resistance, 116
Transformer, ideal, 34
ABCD parameters, 139
For'lowpass network source
resistance, 148
Reflectance, unimodal, 141
Transient overshoot, 19
Transmission line Zo, 10
Transmission zeros, 53, 92
On the jo s-plane axis, 98
On the s-plane real axis, 99
Trap, 23, 30, 53
Asymmetric, 88
Reactance effects on
reflectance, 140
Reactance given null o, 151
. Stopband selectivity effects, 55
Symmetrical frequency pairs,
38
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Tree diagram, 182
Trial points in grid or lattice,
155, 184

Tuning, filter

alternating open/short method,
84 _
_ By input reflection delay, 85

—U—

UM functions (unimodal or
monotonic), 146
Undercoupled response, 19

—V—

Variable space, discretized, 179
Vector, column

Definition, 41, 135

Gradient, 189

Voltage stress, Ex. 2.4.1, 31

—W—

Waves
Incident and emerging, 42
Power, 11, 42
Traveling on transmission line,
10

‘Weights, 187.

Wiener-Lee transforms, 128
7

Zeros of transmission, 53, 92



