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Abstract
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SPARC defines a general purpose 32-bit scalable processor architecture. The simple vet efficient nature of the architecture
allows cost effective and high-performance implementations across a range of technologies. Since its first implementation
done in Fujitsu’s C20K gate array, a number of implementations have been announced in various technologies including
bipolar ECL. All these designs implement the same instruction set. Thus an application program behaves identically and
produces the same results on all SPARC platforms executing the operating systems that support the architecture.
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1. Introduction

SPARC™ logically consists of a 32-bit integer
unit, an IEEE-standard floating-point unit and a
user-defined co-processor unit. Each unit has its
own set of registers. This enables maximum con-
currency between these units. The architecture
assumes a linear, 32-bit virtual address space for
user-application programs.

One of the design goals for SPARC was to
define a very simple yet efficient architecture that
could be implemented cost effectively in various
technologies, where some of them could be faster
and possibly less dense. Another goal was sup-
port for high level languages and keeping compil-
ers relatively simple.

This paper introduces the SPARC architec-
ture. Also covered is the suitability of the archi-
tecture for realtime applications. A complete ar-
chitectural specification is available in ref. [14].
Papers have been written that cover the architec-
ture [5], compilers [8], SunOS on SPARC [7], and
the Fuyjitsu [9,12] and Cypress [10] implementa-
tions. Ref. [1] is about some of the design consid-
erations for the bipolar ECL implementation of
SPARC. An introduction to RISCs is found in
ref. [11].

2. Integer unit

SPARC defines 55 basic integer instructions
and their variations. Instructions include a com-
prehensive set of logical, arithmetic, control
transfer, memory reference and multiprocessor
instructions. Support for Al languages is provided
through tagged arithmetic instructions.

2.1. Registers
L]

SPARC is a rcgister intensive architecture
where a large bank of registers is divided into sets
of overlapping registers known as windows [6].
The architecture defines up to 32 windows. The
actual number may vary across implementations.
Thus, the IU may contain from 40 to 520 regis-
ters '. Each window consists of 32 registers which
are divided into 8 global registers (same for all
windows), 8 ins, 8 locals (unique to each window),
and 8 outs (as shown in Fig. I). Adjacent register
windows share eight registers (outs—ins). Over-
lapped windows provide an efficient way to pass

' A minimal, 40-register, two-window implementation com-
prises 8 ins, 8 locals, 8 outs, 8 globals, and 8 trap handler
locals.
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Fig. 1. Three overlapping windows and globals.

parameters during procedure calls and returns.
The compiler paper [8] explains how windowed
registers can be used.

The active window is identified by the current
window pointer (CWP), a 5-bit pointer, within the
processor state register. Decrementing the CWP
at procedure entry causes the next window to
become active and incrementing the CWP at pro-
cedure exit causes the previous window to be-
come active. An IU state register, the window
invalid mask (WIM), is used to tag a window (or
sets of windows). An overflow or underflow trap
occurs if, due to an operation that changes the
CWP, it is about to point to a tagged window. To
implement the usual LIFO stack of overlapping
windows, one of the WIM bits is set to identify
the boundary between the oldest and the newest
window.

Register windows have several advantages over
a fixed set of registers. Their principal advantage
is a reduction in the number of load and store
instructions required to execute a program. As a
consequence, there is also a decrease in the num-
ber of data cache misses. The reduced number of
loads and stores is also beneficial in implementa-
tions that have multi-cycle load or store instruc-
tions and in tightly coupled multiprocessors.

Register windows also work well in incremen-
tal compilation environments such as LISP and in
object-oriented programming environments such
as Smalltalk, where interprocedural register allo-
cation is impractical. Even though these ex-
ploratory programming languages benefit from
register windows, SPARC does not preclude in-
terprocedural register allocation optimizations
since the subroutine call and return instructions
are distinct from the instructions that advance
and retract the window pointer.

In addition to the window registers there are a
number of architecturally defined registers in the
integer unit; the PSR which holds the integer
unit’s processor state, thzt includes the user /su-
pervisor bit, the integer condition codes, the cur-
rent window pointer (CWP), the FP/CP disable
bits, the 4-bit processor interrupt level PIL and
an 8 bit version/implementation number; the
window invalid mask (WIM); the trap base regis-
ter (TBR); the program counters (PC and NPC)
and the multiply step register (Y). These are
described in detail in ref. [14].

2.2. Instructions

All the SPARC instructions are 32-bits wide
and are defined by one of the three formats

Format 1 (CALL):

1 opl displacement 1
2 30

Format 2 (SETHI):

| 0pl rd i opl immediate |
2 NN 22

Format 2 (Bice, FBfec, CBec):
Iopl a‘ ccl opl displacement |
2143 22

Format 3 (Remaining instructions, i=0):

Iopl rd op rsl1 | i| asior fp-op |r52]
2 5 6 5 1 8 L]

Format 3 (Remaining instructions, i=1):

]ﬂl rd 1 op l rsl l i| immediate |
2 & 6 5 1 13

Fig. 2. SPARC instruction formats.
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illustrated in Fig. 2. Special care was taken in
encoding instructions to enable the fastest possi-
ble implementations.

Format 1 defines a PC-relative CALL instruc-
tion with a 30-bit word displacement. Thus a call
or an unconditional branch can be made to any
arbitrary location in the address space with a
single instruction.

SETHI and branch instructions use format 2.
This format defines a 22-bit immediate field. For
PC-relative branches it provides +8 Mbyte of
displacement. SETHI loads the immediate value
into the high 22 bits of the destination IU register
and clears its low 10 bits. SETHI, in conjunction
with a format 3 instruction, can be used to create
32-bit constants.

Format 3 encodes the remaining instructions
including floating point and co-processor instruc-
tions. It specifies a destination register and either
two source registers or a source register and a
13-bit sign extended immediate ficld. Eight bits
of the immediate field are used as an opcode
extension field for specifying floating-point/co-
processor instructions and, as an “address space
identifier” for the load /store instructions.

2.2.1. Memory reference instructions

Memory can be accessed only through
load /store instructions. For all such instructions,
including floating-point and co-processor
load /stores, the IU generates the memory ad-
dress and the IU, FPU or co-processor sources or
sinks the data.

All memory reference instructions use format
3, and support both “reg, +reg,” and “reg+
signed _ 13-bit _constant” addressing modes. Reg-
ister indirect and absolute addressing modes can
be emulated using g0. Load/storc instructions
support signed/unsigned byte, half-word, word
and double word transfers. If the data is not
aligned at the proper boundary, the instruction
traps. Big-endian or the IBM 370 compatible
byte-ordering is supported. Byte 0 is the most
significant byte in a datum.

For all instruction fetches and normal data
accesses the TU provides a 32-bit virtual address
and an 8-bit address identifier (ASI). Data fetches
could be either normal or alternate. For all in-
structions and normal data fetches ASIs indicate
a user/supervisor and data/instruction refer-
ence. This can be used to provide a protection

mechanism in a system’s memory management
units.

Alternate instructions are privileged and can
be executed only in supervisor mode. Their for-
mat is restricted to “reg, + reg,”. They use eight
ASI bits to specify either the user instruction or
user data spaces, or up to 252 other system-de-
pendent, 32-bit address spaces. The SPARC ar-
chitecture defines only user/supervisor, instruc-
tion /data spaces; the remainder can be defined
by the system architecture.

Unlike many other RISC architectures,
SPARC does not have “delayed loads”. An in-
struction immediately following a load instruction
may use the load data. This simplifies the job of
scheduling instructions by compilers. Depending
on implementation this case may cause the se-
quence to take an additional cycle to complete
the operation.

2.2.2. Multiprocessor instructions

SWAP and load-store unsigned byte
(LDSTUB) instructions provide support for tightly
coupled multiprocessors. SWAP exchanges the
contents of an IU register with a word from
memory. It can be used in conjunction with a
memory-mapped co-processor to implement syn-
chronizing instructions, such as the non-blocking
“fetch and add” instruction. LDSTUB reads a
byte from memory into an IU register and then
rewrites the same byte in memory to all ones. It
can be used for blocking synchronization schemes,
such as semaphores [4]. Both the instructions are
atomic.

2.2.3. Arithmetic / logical instructions

These format 3 integer instructions perform
either a logical or an arithmetic operation on two
operands and optionally write the result into a
destination register. Arithmetic instructions have
two types: ones that update the integer condition
codes and ones that do not. There are four condi-
tion codes, negative (N), zero (Z), overflow (V)
and carry (C). They are stored in the processor
state register.

The “multiply step” instructions (MULScc) are
used to generate the 64-bit product of two signed
or unsigned words in multiple cycles. Though
(MULScc) processes the multiplier one bit at a
time, as mentioned in the compiler paper [8],
higher-level language multiplications execute in
an average of six cycles.
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2.2.4. Tagged instructions

These instructions provide support for lan-
guages that can benefit from operand tags, such
as LISP and Smalltalk. They assume 30-bit left
justified signed integers and use the least signifi-
cant two bits of a word as a tag. The “tagged
add /subtract” instructions (TADDcc, TSUBcc)
set the overflow condition code bit if either of the
operands has a nonzero tag (or if a normal arith-
metic overflow occurs). Normally, a tagged
add /subtract is followed by a conditional branch
instruction, which, if the overflow bit has been
set, transfers control to code that further deci-
phers the operand types. Two variants, TADDcc-
TV and TSUBccTV, trap if the overflow bit has
been set and can be used to detect operand type
errors.

2.2.5. Special instructions

These instructions are used to read and write
architecturally defined registers. Some of them
are privileged and can be executed only in the
supervisor mode. SAVE and RESTORE instruc-
tions are used to decrement or increment the
current window pointer. They trap if the adjust-
ment would cause a window overflow or under-
flow. They also operate like an ordinary ADD
instruction and thus can also be used to atomi-
cally adjust a program stack pointer.

2.2.6. Control transfer instructions

These instructions consist of call, branch, jump
and link and trap on condition code instructions.
For efficient execution of these instructions,
SPARC uses the concept of delayed branches.
For most of these instructions the instruction that
follows the control transfer instruction is exe-
cuted before program control is transferred to
the target instruction.

Compilers try to move a useful instruction
from a location before the branch into the de-
layed slot. When this is not possible, a NOP is
generally placed in the delay slot. However,
SPARC conditional branches have a special “an-
nul” bit. If the annul bit is set and the conditional
branch is not taken, the delay instruction is not
executed. This feature allows compilers to move
an instruction from the target, or move an in-
struction from one arm of an IF-THEN-ELSE
statement into the other. By use of the annul bit,
compiled code contains less than 5% NOPs.

Traditional non-delayed branches can be emu-
lated using the “branch always” (BA) instruction.
If a BA with the annul bit set is executed, its
delay instruction is not executed. It can also be
used to efficiently emulate unimplemented in-
structions if, at runtime, the unimplemented in-
struction is replaced with an annulling BA whose
target is the emulation code.

The “trap on condition code” (Ticc) instruc-
tions do not have a delay slot and they condition-
ally transfer control to one of 128 software trap
locations. Ticc’s are used for kernel calls and
compiler run-time checking.

3. Floating-point unit

SPARC defines fourteen basic floating-point
instructions. IEEE single, double and extended
precision data types are supported. The FPU has
thirty-two 32-bit-wide registers. Double-precision
values occupy an even-odd pair and extended-
precision values occupy an aligned group of four
registers. Data cannot be transferred directly from
IU registers to FPU registers, it has to be done
through the memory. The instruction set defines
double-word (64-bit) floating-point loads and
stores to boost double-precision performance.
Also, in order to decrease context switch time,
the FPU can be disabled so that its registers need
not be saved when switching from a process that
does not use floating-point.

SPARC allows floating-point operations, such
as multiply and add, to execute concurrently with
each other, with floating-point loads and stores,
and with integer instructions. This concurrency is
hidden from the programmer: a program gener-
ates the same results, including traps, as if all
instructions were executed sequentially.

Because of this concurrency, the TU’s program
counters can advance beyond floating-point in-
structions in the instruction stream, before the
floating-point instruction completes. There is a
special group of registers, the floating-point queue
(FQ), that records the floating-point instructions
(and their addresses) that were pending comple-
tion at the time of a floating-point trap. The
queue’s head contains the unfinished instruction
(and its address) that caused the floating-point
trap.
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Floating-point operations can also execute
concurrently with cache misses. If a floating-point
store attempts to writc a result whose computa-
tion has not yet finished, the TU stalls until the
floating-point operation is complete. A ‘‘store
FSR” instruction also causes the FPU to wait for
outstanding floating-point operations to finish.

The “floating-point operate’” instructions
(FPop) are specified via the 9-bit “opf” field of
format 3 instructions. They compute a single,
double, or extended-precision result that is a
function of two source operands in FPU registers
and write the result into FPU registers. The float-
ing-point compare instructions write a 2-bit con-
dition code in the FPU’s floating-point status
register (FSR) that can be tested by the “branch
on floating-point condition codes” (FBfcc) in-
struction. There are instructions that convert be-
tween all formats, including integers.

In general, a user program sees a complete
ANSI/IEEE 754-1985 implementation, even
though the hardware may not implement every
nuance of the standard, such as gradual under-
flow. Software emulates missing hardware func-
tionality via FPU-generated traps.

4, Co-processor

As mentioned earlier, SPARC has instruction
support for a single co-processor (in addition to
the floating-point unit). The co-processor instruc-
tions mirror the floating-point instructions:
load /store co-processor, “branch on co-processor
condition codes”, and “co-processor operate”
(CPop). Co-processor operate instructions, can
execute concurrently with integer instructions,
and have not been defined as a part of the
SPARC architecture.

5. Real time applications

The SPARC allows for fast trap handling,
which is very useful in real time applications. The
register windows in SPARC always provide eight
free registers for trap handling, thus allowing for
fast entry into trap handlers. When a trap or
interrupt occurs, the CWP is decremented — as
for a procedurc call — making available to the
trap handler six of the local registers of the next

window. (Two of the locals are written with the
IU’s two program counters.) For a simple handler
it takes about six cycles (in the first implementa-
tion) to enter the handler and another six to
exit. > This assumes no cache misses. For cache
misses this number would increase depending on
the miss cost. If more registers than allocated for
the handler are required, then a window save is
necessary. This will increase the cost of interrupt
handling. Note that on process switches only the
active windows are saved, nor the entire set of
windows, *

The register windows can be managed in a
variety of different ways for different applica-
tions. For applications that require rapid context
switching, such as device controllers, the windows
can be partitioned into non-overlapping pairs,
with one pair allocated per process. At process
switch time, pairs of windows could be switched
providing each process with 24 private registers
plus 8 global registers and a set of 8 registers for
trap handling. With a large register file a number
of these contexts can simultaneously reside in the
processor and the WIM could be used to protect
cach process’s registers from the other processes.

5.1. Traps and exceptions

Execution of a given instruction can raise sev-
eral traps or exceptions. The source of a trap can
be internal (synchronous) or external. In both
cases the IU handles the trap in a similar man-
ner. All traps raised during the execution of any
instructions are deferred to the last stage of the
pipeline, at that stage the highest priority trap is
taken. Traps are vectored using the trap base
address register (TBR) to point to the trap table.
When a trap is taken, the current window pointer
is decremented, further traps are disabled, the
two program counters (PC and NPC) are auto-
matically saved and the program continues at the
trap vector location. External interrupts are given
to the TU using 4-bit interrupt input signals. A
non-zero value on these inputs is detected by the
IU as an external interrupt request. This value is

2 This assumes that the handler runs with traps disabled,
there are no subroutine calls and only five of the local
registers are required.

* The cost of saving or restoring a window is not large: on the
Sun-4,/200, it approximates the overhead of 7 cache misses.
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compared with the processor interrupt level in
the PSR and an interrupt is taken if the external
interrupt request level is greater than the proces-
sor interrupt level. The highest level interrupt
(level 15) is defined to be non-maskable, although
all traps can be disabled via the enable trap
ET-so bit in the PSR.

All external interrupts are ignored when traps
are disabled. If a synchronous trap is detected
while traps are disabled, the TU enters into an
error mode and remains in that mode until it is
reset by external logic. At reset, the IU is initial-
ized and starts execution from address zero.

Floating-point exceptions, in general, occur
asynchronously with respect to the IU pipeline
since integer instructions are executed concur-
rently with the floating-point instructions and
floating-point instructions take a variable number
of cycles to complete their execution or generate
an exception. However, in SPARC floating-point
exceptions are taken synchronously. Floating
point exceptions detected during the execution of
an instruction are kept pending till another float-
ing point instruction enters the IU pipeline. At
that time the floating-point trap is taken (if it is
the highest priority).

6. Conclusion

This paper summarized the SPARC architec-
ture. It has been licensed to a number of differ-
ent semiconductor companies which has resulted
in various implementations at a variety of price—
performance points, The simplicity of the archi-
tecture resulted in its being the first 32-bit gen-
eral purpose architecture to be implemented in a
gate array. Within a short time after that we saw
its ECL implementation from BIT. With a num-
ber of companies working on different implemen-
tations we expect to scc SPARC in both emerging
and mature technologics.
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