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istorians and other scholars have convincingly
Hportrayed the development of the transistor as the
product of research in multiple disciplines conducted
in both academic and industrial laboratories. Historian of
physics Charles Weiner succinctly summarized the
accomplishment of John Bardeen, Walter Brattain, and
William Shockley, the Bell Laboratories’ trio credited with
the 1947 invention of the transistor as “emerg[ing] from a
complex interaction of individuals, ideas, and institutions.”2
The three benefited from over twenty years of research in
semiconductor materials, which in turn depended on
advances in theories of solids, most notably the quantum
theory of solids developed principally in Europe in the 1920s
and 1930s.3
Contemporaries recognized this developmental
dynamic as well. The editor of the November 1952 issue of
Proceedings of the IRE commented specifically on the
cumulative aspects of the transistor’s invention, noting the



Holbrook

76

contributions of a diverse set of scientists and engineers
working in the service of both scientific and industrial
projects.* And William Shockley himself acknowledged that
the discovery of the transistor was far from an independent
event. Rather it depended on a long series of previous
inventions and theoretical developments.>

As the semiconductor industry grew and its product
lines expanded, the same dynamic remained in operation.
Commenting on the development of the monolithic integrated
circuit (IC), one of the men credited with its invention, Jack
Kilby of Texas Instruments explained that “progress [in ICs]
is not the work of any single individual or small group of
individuals. It has come about because of the contributions
of thousands of engineers and scientists in laboratories and
production facilities all over the world.”® Industry historian
Ernest Braun writes in a recent volume that innovation in
solid-state electronics has been marked not so much by
“great men and women and their glorious deeds” as by
“superb efforts by great teams and many individuals within
them,” employed by academic laboratories and firms large
and small.” All these observations acknowledge the
importance of contributions from diverse disciplines and
sites to the overall development of semiconductor
technology.

How is this diversity of activities linked to larger
processes of technological change? In recent years,
historians and other academics have turned to variation and
selective retention models of technological development.
Historians George Basalla and Joel Mokyr, for example,
both offer such models to explain the development of
technologies.8 Economists Richard Nelson and Sidney
Winter offer a variation and selective retention model that
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seeks to explain the dynamics of economic growth under an
industrial capitalist system.® While these authors and others
using the so-called “evolutionary” models—with their
invocation of the concepts familiar from classical biological
evolutionary theory—recognize that diversity is important,
they tend, nonetheless, to focus on the selection half of the
model and to neglect the sources of the variations on which
their selection mechanisms operate. These theorists simply
assume that variation or diversity is an inherent part of the
world, whether natural or man-made. They focus instead on
the selection processes.10 Little emphasis is placed on the
existence of diversity among firms in an industry or on how
and why such diversity may be important when
technological development takes place mostly through the
efforts of firms.!1

To demonstrate the contribution of diverse sets of
technological and scientific knowledge to the overall advance
of semiconductor technology, this article examines two
different materials used in the semiconductor industry. It
first focuses on Shockley Semiconductor Laboratories’
efforts to develop new means of producing device-grade —
that is, ultra-puré —silicon. It then looks at research efforts
at Fairchild Semiconductor Corporation concerning another
important though less-examined material, photoresist.12
Finally, the article briefly outlines the importance of diversity
in the development of other chemicals used in the
semiconductor industry. In each case diverse skills and
knowledge that resided outside of the firm were needed to
advance the work within the firm. This sort of diversity,
which I will call complementary diversity, is frequently
found in cases where the technology is particularly complex
and thus requires knowledge from different disciplines
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and/or industrial sectors. Complementary efforts also often
occur in situations where a material or process from one
industry gets adopted by another, and the adaptation to the
new application requires that knowledge from the supplier
industry and knowledge from the user industry be brought
together.

Materials and Devices in the
Semiconductor Industry

No area was more basic to the success of the
semiconductor industry and its technology than materials.
Properly functioning transistors and other solid-state
electronic devices depended on precise control of the
composition and geometry of their constituent materials.
The semiconductor industry required materials of much
greater purity than any other contemporary industry.!3 The
tight connection between structures and materials had
marked consequences for solid state electronic devices and
greatly influenced the course of research in the industry.

The semiconductor industry used more than just the
elemental and compound semiconductor materials that
formed the basic device structures. Richard Petritz, a
contemporary semiconductor scientist, commented that “the
processes used for manufacturing devices are sophisticated
combinations of diverse technologies.”!4 Various
chemicals, plastics, metals, ceramics, and glasses were
essential to the manufacture and operation of semiconductor
electronic devices.!> During the 1950s, as solid state
electronics technology developed, research in all of these
materials areas contributed to the technology’s advance.
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A constellation of manufacturers and suppliers
engaged in materials research. Innovation in this area,
however, relied on complementary research rather than
simply competitive or mutually exclusive efforts, and many
developments depended on adoptions from other
technological areas. Metals, glasses, process- and
photochemicals, plastics, and ceramics all came from other
industries with existing networks of suppliers and
researchers. The complementary nature of those networks
and technologies for semiconductor manufacturing fed the
development and manufacture of transistors and other solid
state devices. A high degree of cooperation thus
characterized this particular aspect of the technology’s
development.

This situation is, of course, somewhat to be
expected. Since many of the materials used for
semiconductor device manufacture were adopted from other
industries and processes, a considerable amount of relevant
knowledge already existed. Required adaptive research
could be extensive or minimal but in either case was often
best performed by those entities having the greatest existing
knowledge. Communication and cooperation between users
and suppliers frequently led to such research being
performed by the suppliers.16

Complementary efforts between otherwise competing
firms did not as a rule take place within explicitly
coordinated or formalized programs. Rather, the complexity
of the technology and the different histories of the
individuals and firms involved helped establish patterns and
networks for the exchange of technical and scientific
information.
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The interdisciplinary nature of semiconductor work
was clear from the beginning of Bell Telephone Laboratory’s
post-war semiconductor research program. Bell Labs’
efforts utilized the knowledge and skills of several different
scientific and engineering fields, including metallurgy,
physics, and chemistry.l” Further developments in the
technology continued to depend on such interdisciplinary
endeavors. The production of semiconductor devices
developed into a complex system of interrelated
technologies. Chemical, thermal, optical, and physical
processes all had their places in the manufacturing
procedure. Developers of both products and processes
continued to need knowledge from these disparate areas.

Even the largest and most broadly competent firms in
the industry had to rely on other organizations for some
needs. Bell Labs, for example, had its own metallurgists,
chemists, physicists, and engineers of various stripes, but
utilized researchers from academia and other firms as well as
expertise from its materials suppliers to further its
semiconductor research.!® The smaller semiconductor firms
founded in the 1950s could not hope to muster the resources
needed to develop all facets of the complex technology. For
firms such as Shockley Semiconductor Laboratories and
Fairchild Semiconductor Corporation the complexity of the
technology demanded cooperation with other research
organizations.

Still, even small firms performed some research and
development work. Their research agendas differed from
those of larger firms due to their different histories as well as
of the perspectives of their founders and managers. Thus
one source of diversity was the existence of a relatively large
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number of firms, each of which possessed particular
capabilities and viewpoints.

Aiding the dissemination of complementary
knowledge was the fact that many of the founders and
managers of early semiconductor firms were trained as
scientists, and relatively free and open exchange of research
results is a foundation of the scientific ethos.!® Managers
and researchers in the science-rich semiconductor industry
adhered to this ethos, though it was somewhat modified by
business competition.20 The scientists' general willingness
to exchange information, combined with the cooperation
required by the heterogeneous nature of the production
process, created an industry marked by active and
widespread interchanges of technical and scientific data
using both formal and informal information exchange
networks.2!

During the early years of semiconductor technology,
technical complexity fostered cooperation between firms
possessing complementary knowledge and research assets.
Both large and small firms needed to rely on the knowledge
and skills of other firms. Whether complexity makes
complementary research agendas more likely is not clear; it
seems, however, to make complementary efforts more
necessary.2?

Entries in Industrial Research Laboratories of the
United States for the late 1950s and early 1960s indicate
that materials technologies research commanded the interests
of firms who were also listed as doing electronics
research.23 These included independent research labs (for
example, General Laboratory Associates); laboratories of
large manufacturing and chemical companies (such as those
attached to General Electric, North American Philips,
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General Tire and Rubber, DuPont, Union Carbide and
Carbon); research labs of large firms (Westinghouse,
AT&T); and those of small firms (Vitramon, Inc., Electronic
Transformer Co.). Automotive firms, chemical firms,
electrical equipment manufacturers, instrument companies
and others, in addition to semiconductor manufacturers, all
listed themselves as doing some type of materials research.

Table 1:
Electronics firms performing materials research:
1956, 1960, 1965

1956 1960 1965

“Electronics” firms 147 172 156
Materials R&D 27 54 59
Percent 18.4% 31.4% 37.8%

Source: Industrial Research Labs of the United States 1956, 1960, 1965.

The data in Table 1 reveal the increasing importance
to electronics firms of materials research. For 1956, 27
electronics firms (18.4%) indicated that they performed
some level of materials research. In 1960, 54 firms
(31.4%), responded that they performed both electronics and
materials research; by 1965 the number of such firms
climbed to 59 (37.8%).24 The types of materials
technologies being researched remained largely consistent
and concentrated around semiconductor materials, structure
and purity of crystals, magnetic materials, dielectrics and



Diversity, Complementarity, and Cooperation

insulators, ceramics and vitreous materials, and quartz and
carbon materials and containers.

Each of the above research areas could provide
illustrations of the contributions of diverse sets of expertise
to overall technical advance. Here, however, we will
examine particular events at the R&D laboratories of
Shockley Semiconductor Laboratories (SSL)25 and Fairchild
Semiconductor Corporation (FSC) to show how the efforts
of different firms combined to improve manufacturing
processes as well as the performance of the devices
themselves.26

The Development of Materials
Science

The post-war development of materials science as a distinct
and officially recognized field coincided almost exactly with
the development of the semiconductor industry. A brief
review of the emergence of materials science itself, then, is
the most logical starting point for the exploration of
complementary and cooperative research patterns.
Government funding for research on materials
increased dramatically in the 1950s, as it did for many types
of research. Increasing emphasis on and greater definition
of solid state physics, which had begun in the pre-war years,
continued. Cold War concerns about declining funding for
basic science research in the United States, amplified by the
vigor of government reaction to the Sputnik launch, led to
the formation of university-based research centers devoted to
interdisciplinary solid state research.2’ The new “materials
science” explicitly addressed issues of improvements in
materials, which had become “the limiting factor” in a
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number of crucial military equipment areas, including
semiconductor electronics.2® Materials science was a “union
of physicists, chemists, and metallurgists” whose areas of
research overlapped and intermixed, with “a stress on
practical applications.”?® Materials science directly related to
the semiconductor industry was no different, though basic
science played a lesser role while empirical research played a
larger one.

Solid state physicists’ application of theory to the
creation of useful devices fostered the tight intellectual and
financial connections between materials science and
industry .30 Many advances in materials technologies came
from empirical work in problem-oriented industrial labs
operating under economic and corporate constraints rather
than from the basic scientific research more typical of
academic laboratories.3! Semiconductor manufacturers
certainly shared in the results of university research, but
academia’s role in semiconductor materials science declined
as industrial labs increasingly dominated materials research
in the industry.

Semiconductor Materials

Semiconductor materials research received a strong boost
during the war.32 University and industrial researchers who
were pursuing more sensitive detectors for radar performed
extensive investigations into germanium and silicon.
Wartime solid state research established strong contacts
between universities and industrial firms. During the war,
Frederick Seitz of the University of Pennsylvania utilized
DuPont’s interest and expertise in high purity silicon;33
likewise Karl Lark-Horovitz at Purdue worked with the
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Eagle-Picher Company on high purity germanium.34 Silicon
diodes made from DuPont silicon were manufactured during
wartime by Westinghouse, Sylvania, GE, and others.35

The almost immediate post-war discovery of the
transistor reinforced the existing interdependence between
materials research and device design and construction.
Researchers had to meet two goals: regularity of crystalline
structure and the precise introduction of selected impurities.
Since the proper functioning of semiconductor devices
depended on the crystalline structure of the material, control
over it became essential. At the same time, William
Shockley’s 1949 junction transistor theory brought a new
problem into focus—the selective addition of specific
elements to the semiconductor material, or “doping.” Thus,
both purity in the starting material and the ability to add
controlled amounts of impurities became prime research
goals for the industry. Solving these twin problems
involved both theoretical and empirical research.

Semiconductor materials research shows the
importance of diversity in technical and scientific activities.
The wartime alliance of commercial firms, academic
laboratories, and government enterprises continued to
perform semiconductor materials research. Industrial labs at
BTL, DuPont, Texas Instruments, General Electric,
Sylvania, RCA, and others, all active in wartime
semiconductor-related research, either began or increased
semiconductor research programs following the transistor
discovery.36 Government labs participated as well. The
National Bureau of Standards, for example, carried out
important semiconductor research explicitly in the interest of
industry.37
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The process of making electronics-grade germanium
and silicon consisted largely of chemical reductions and
purifications; thus, chemical firms led the research efforts.
DuPont pursued research on silicon because of its potential
as a substitute for titanium in pigments, one of its important
businesses.3® The company manufactured titanium dioxide
using a chlorine reduction process. The need for purer
silicon during the war suggested an analogous reaction using
zinc and silicon chloride to DuPont researcher C. Marcus
Olson.39 The chlorine process allowed DuPont to supply
military demand for silicon during the war and commercial
demand afterward. Bell Telephone Laboratories (BTL) used
DuPont silicon in transistor development work beginning in
1952, and industry demand expanded rapidly after 1954
when Texas Instruments announced the first mass-produced
silicon transistor.49 This device emerged from Texas
Instruments’ materials research program, run by BTL
alumnus Gordon Teal.4! By 1958 DuPont was making a
thousand pounds of electronics-grade silicon per month.42

Bell Labs’ diffusion process, a new way of making
junction transistors announced in 1956, required purer
starting materials than DuPont’s chlorine process
produced.®3 In the early 1950s Siemens, a large German
electrical equipment firm, developed a process utilizing the
decomposition of silane.*4 Westinghouse Electric bought
the United States rights to this process and licensed it to
DuPont, Merck, and other firms.4> DuPont management
had approved a 50,000-pound-per-year plant using its
silicon chloride process in 1957,46 but the new Siemens
process and other refining techniques (discussed below)
made DuPont’s process technology increasingly obsolete.
Backward integration at Texas Instruments and other
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semiconductor manufacturers further eroded the chemical
firm’s position, and DuPont left the business in the early
1960s when it decided not to integrate forward into
electronic device production.

Silicon came to dominate as the base material for
semiconductor devices. Though germanium remained
widely used, the percentage of devices made from this
material dropped steadily from 1954 to 1965.47 Germanium
supply firms such as Merck, Eagle-Picher, and Mallincrodt
Chemical suffered from this change, though Merck at least
picked up the slack with its own silicon program. More
importantly, Siemens-process silicon, though purer than
previously available, was still inadequate for new diffused
devices.

The coupling between materials and devices must be
appreciated as an important factor in the development of the
industry. New device structure discoveries often motivated
the search for new or better materials and processes, as in
the case of the junction transistor, the MOS transistor, and
later devices.#® Put simply, the performance of a
semiconductor electronic device depends on its structure, at
both atomic and more tangible geometric levels. Controlling
these features is thus absolutely fundamental. Starting with
Bell Labs’ transistor program in the 1940s, the art and
science of making transistors depended on materials
technology. This process involved “undertak{ing] to make
suitable structures in solids by various techniques to fulfill
the conditions in the device design.”#® William Shockley’s
1949 theory of the junction transistor proposed that activity
at the junction of differently doped semiconductor material
(p-n junctions) would produce rectification and transistor
action. Bell Labs instituted a research effort to produce such
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junctions. One year later two Bell Labs’ researchers
developed equipment in which they grew germanium of
highly regular crystalline structure (called single crystals)
and produced p-n and later p-n-p junctions.50 Thus
materials research made the new junction transistor possible.

This dynamic operated in both directions, however.
For example, the success of the first junction devices
triggered increased research into materials technologies to
improve the performance and construction of such
transistors. William G. Pfann at BTL originated zone
melting (now more commonly known as zone refining), as a
“new way of using the freezing process” to purify
germanium.3! This innovation, in Pfann’s words,
“combines the well-known fact that a freezing crystal differs
in composition from its liquid, with the simple idea of
passing a short molten zone along a lengthy charge of
solid.”>2  Since impurities are more strongly attracted to
molten material, they “adhere” to it, and the moving molten
zone carries them the length of the charge to the end. There
the gathered impurities can be simply cut off. The process
renders the remaining crystal extremely pure.

Though Pfann was modest in describing his
discovery of zone melting, his central insight was far from
“simple.” The application of zone refining to semiconductor
materials was highly useful, however, as commercial and
experimental use quickly ensued. Demonstrating the
“simple” applicability of Pfann’s ingenious insight, firms
and laboratories constructed zone refining equipment
relatively easily from available information.53

Zone melting also proved useful for aligning the
crystal’s atomic structure, another requirement for improving
transistor performance.>* The existing standard procedure,
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the Czochralski method, adopted from a technique used
earlier in the century for growing metallic crystals, first saw
use for semiconductor crystals at Bell Labs in 1948.55 By
dipping a small piece of crystal which had the desired atomic
structure into a pool of molten semiconductor material and
then slowly withdrawing it, a worker could “pull” regular
crystal rods out of the pool.

Despite working well for germanium, the
Czochralski method proved inadequate for silicon because
silicon’s strong affinity for other materials caused its easy
contamination by other substances with which it came into
contact. When researchers tried pulling silicon single
crystals from a molten pool, they found that introduced
impurities from the container (the crucible) permeated the
crystal and the process yielded less useful crystals. The
search for solutions to this problem illustrates the
participation of different institutions, and the importance of
diversity, in materials technology innovation.

To address the contamination problem, researchers
tried several strategies, including finding a crucible material
with which silicon reacted less readily or simply eliminating
the crucible. Both approaches involved materials technology
research. More ambitious researchers attempted wholly
different methods of producing silicon single crystals.
Attacking the silicon dilemma took the combined efforts of
semiconductor manufacturers, chemical firms, specialized
materials firms, and private research laboratories, as the
following episodes from the history of Shockley
Semiconductor Laboratories, the earliest Silicon Valley
semiconductor firm, show.

89



Holbrook

90

Shockley Semiconductor and the
Refining of Silicon

After leaving Bell Labs in 1954, William Shockley formed
his eponymous semiconductor laboratories in Palo Alto,
California, in late 1955. Shockley intended to make a
diffused silicon transistor, a device at that point monopolized
by Texas Instruments. Gordon Moore, an early Shockley
employee and later a founder of Fairchild Semiconductor
Corporation, remembers that Shockley “had some ideas that
he thought would give him [an]} advantage.” Prime among
them was a new way to grow silicon crystals that Shockley
thought would be a big improvement.5¢ Shockley himself
told of an “early days” project “to gamble on taking certain
advanced steps in the growing of crystals,” though his firm
also had a “conventional growing program.”57 Shockley’s
lab pursued both crystal growing projects in cooperation
with other research organizations.

In partnership with Stanford Research Institute,
Shockley pursued different crucible materials: “We have
been engaging in a cooperative program with Stanford
Research Institute in connection with attempts to grow
silicon carbide crystals from melts. In addition, we . . .
have been supporting a program on new crucible materials
for growing silicon crystals.”>8 These new materials
included graphite, silicon-coated graphite, silicon carbide,
and silicon itself.

Graphite was used commonly for laboratory
equipment but proved inadequate for holding molten silicon.
On one hand, silicon reacted with the graphite surface to
form a thin layer of silicon carbide which could provide
protection against further contamination. On the other hand,
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small flaws in the graphite surface allowed the silicon to
penetrate the crucible structure, where it formed silicon
carbide. As this substance formed, it expanded and
destroyed the crucible.>® Neither efforts at using silicon
carbide as the main material nor the silicon-coated graphite
crucible project yielded useful results and Shockley halted
the project in 1959.60

Using silicon as its own crucible, however, still
looked promising to Shockley. The concept of using silicon
as its own crucible was simple and brilliant. This “gamble
on certain advanced steps” consisted of eliminating the
crucible entirely, and, as Shockley described it, growing
“silicon crystals from a puddle of molten silicon contained in
a body of solid silicon.”¢! However, selective heating of
strictly defined areas of a solid silicon mass proved
problematic and, despite valiant efforts, the crucible-less
project folded under the pressure of other priorities.52 In
short, none of these projects yielded usable crucibles.

Shockley extended and received other offers for
cooperative research in silicon crystal growth. In 1956
Battelle Memorial Institute proposed some cooperative work
on single-crystal silicon. Shockley refused the offer but
indicated that he would like to keep a channel open between
the two organizations.®3 Two years later Shockley
approached first the pharmaceutical firm Merck & Co. and,
later, W.R. Grace Company, relatively new to the chemical
industry, concerning a silicon crystal growing project.%4 In
both cases Shockley proposed that his lab undertake the
theoretical and planning aspects while development work
would be done by the other organization. Concerning this
project, Shockley explained:
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My thought is that the work would be supported largely by
Grace personnel, who would carry out the work and arrange for
the building of apparatus. Our participation would include the
original planning of the program by myself, the evaluation of
materials resulting from experiments at our laboratory and the
obtaining of Government backing for the program if it were

felt that Government support was desired.63

Shockley clearly perceived that the two firms’ skills differed
and the complementary nature of their diverse skill sets.

Non-reactive crucibles remained elusive and,
ultimately, elaborations of Pfann’s zone refining made the
search unnecessary. H.C. Theuerer of Bell Labs altered
conventional zone refining equipment to eliminate contact
between the semiconductor material and any container.
Moving the molten zone along a vertically suspended silicon
crystal made both refining and single crystal growth
possible. Surface tension held the molten zone in place.56
Bell Labs’ first application of this new technique produced
refined single silicon crystals. Like simple zone refining,
floating zone refining spread rapidly in the industry. By
1961, according to a Merck researcher, “float zone refining,
once considered a hopeless commercial process,” had
“become practical.”®? The introduction of this technique
made device grade silicon much more readily available.8

By the early 1960s, semiconductor materials refining
technology had stabilized but the structure of industry supply
had changed markedly. As silicon processing became less
chemical and more mechanical/physical the special skills of
chemical firms became less relevant. Firms such as DuPont,
Merck, and Monsanto eventually withdrew from the
business. At the same time, semiconductor firms like Texas
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Instruments and Fairchild, among several others, integrated
vertically into material production and the sale of device-
grade silicon. Vertical integration rested on the skills
accumulated by semiconductor firms in the course of their
materials R&D, skills acquired through the actions of
complementary diversity.

By the early 1960s the rapid technological shifts in
semiconductor device design and production processes
began to abate. Silicon devices made by oxide masking and
diffusion techniques became dominant. Texas Instruments,
the innovator of the silicon transistor, and Fairchild
Semiconductor, whose oxide processing techniques became
central to device manufacturing, led the industry in
innovations and market power. Their vertical integration
into semiconductor materials increased their dominance and
ensured them a steady supply of high-quality materials. The
development of crystal-growing and refining technologies
made vertical integration possible, freeing the leading firms
from reliance on the skills and resources of outside firms.

Crystal-growing, however well-developed by 1960,
presented other problems. Slicing the crystals into the
wafers on which to manufacture transistors, and polishing
the wafers to sufficient smoothness incurred waste
frequently approaching fifty percent of the original crystal.
Prodded by such problems, firms and their researchers
sought other means of preparing semiconductor wafers.

One such method was so-called dendritic crystal
growth, by which semiconductor material was drawn from
the melt in long, thin, “ribbons” of pure, single
semiconductor materials rather than as round crystals.®9 As
early as 1955 researchers at various labs undertook efforts in
this area.”’® Device manufacturers such as Westinghouse,
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Sylvania Electrical Products, Texas Instruments, and
Shockley Semiconductor Laboratories, as well as supplier
firms such as Merck, Dow, and DuPont all conducted
research of this type.’!

Despite some success, dendritic materials
encountered resistance within the semiconductor industry.
The crystalline structure of the materials was inconsistent,
and developments in other production processes
accommodated round wafers only. Gordon Moore, head of
Fairchild’s R&D lab from 1958 to 1968, recalled:

Dendritic silicon [was supposed to] replace the round roules. It
was an interesting approach, but [other aspects of] the
technology w{ere] developing around using round wafers . . .
and [dendritic growth] was not completely successful in
growing high quality material. Even when people were trying
to use it, they were taking a cookie cutter and cutting: round
wafers out of the flat sheets so they could use the te&nology

that was developing for spinning on photoresist.72

Dendritic growth programs, in other words, did not
complement research developments in other process areas,
and withered as a result.73

Semiconductor materials technology, then, advanced
through several stages in the industry’s first decades. In the
earliest phase, in the 1940s and very early 1950s,
universities and some commercial firms advanced
knowledge concerning the composition, manipulation, and
production of pure forms of germanium and silicon. With
the commercial production of transistors and other
semiconductor devices beginning in the early 1950s, more
firms and laboratories began researching these materials, and
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the main locus of knowledge production shifted towards
industrial laboratories. Supplier firms as well as their
customer semiconductor firms conducted materials research,
sometimes in close cooperation. But by 1960 or so silane
reduction and zone refining techniques had become the
industry standard, and semiconductor firms became the
largest semiconductor materials producers. The
complementary diversity that marked the development of
semiconductor materials became less necessary as the major
problems of crystal growth and purity were solved. Other
materials critical to the industry, however, displayed the
same developmental dynamic: reliance on diversity.

Chemicals

Research and development in the chemical aspects of
semiconductor device manufacturing involved efforts in both
the semiconductor firms and the chemical supply firms.
Here, too, semiconductor manufacturing firms and their
supplier firms performed complementary research to solve
the industry’s problems. Device manufacturing firms, as a
rule, researched new methods of using chemicals to produce
the electronic structures needed for proper device
performance. Meanwhile, chemical firms researched,
produced, and supplied chemicals suitable for the
manufacturers’ purposes with these applications firmly in
mind.74

Chemical processes dominated semiconductor device
manufacturing. Materials used in production equipment and
virtually every step of the production process involved
chemical processes. Semiconductor technology’s need for
ultra-pure materials extended to the process chemicals and
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associated equipment. One study of the industry holds that
“the production technology of the semiconductor industry is
essentially the technology of materials,” but that “the change
in materials technology really occurred in the chemical rather
than the semiconductor industry.””5 While this statement
exaggerates the situation, it nonetheless highlights the degree
to which developments in semiconductor manufacture
depended on the existence of complementary research and
manufacturing skills.

A 1964 survey of chemical use in the semiconductor
industry observed that “new products for electronics
manufacturers have resulted because the chemical industry
has recognized a need and undertaken research programs to
satisfy this need.”’6 The application of either “novel
approaches in chemical technology or improved techniques
using existing processes” caused these process
improvements.”” These approaches and techniques included
improvements in purity, chemical handling and packaging,
and specialized technical services provided by chemical
industry research efforts.”® The complementary research
and development efforts relating to chemicals are well
illustrated in the case of photoresists, materials used in
patterning masks and wafers.

Photoresists

Virtually every production process in the early
semiconductor industry can trace its origins to work done in
government labs or under military sponsorship, and
photoresist technology is no exception. The earliest large-
scale application of photoresist technology to semiconductor
device manufacturing took place at the Diamond Ordnance
Fuze Laboratory (DOFL) in Washington, D.C. in the mid-
1950s,79 but the techniques quickly spread to industry as a
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part of the military program to upgrade the capabilities of the
country’s electronics industry.80 Photoresist technology
was crucial to Bell Labs’ oxide masking and diffusion
junction-making process. As such photoresists were central
to the later success of the semiconductor industry.

Photoresists are chemicals that are affected by
exposure to light, and can be used to place patterns on a flat
surface.8! The basic process was adapted from the printing
and graphics industry, and came therefore to be called
“photolithography.”82 The entire surface to be patterned,
such as of a wafer of semiconductor material, is coated with
photoresist, then a stencil, called a mask, is placed over it.83
The wafer is then illuminated, and any unmasked areas are
exposed. These exposed areas of photoresist harden, and
the unexposed, unhardened areas are dissolved, leaving the
desired pattern on the wafer.

In the oxide masking and diffusion process, a thin
layer of oxide is formed on the surface of the semiconductor
wafer (see Figure 1.) The photoresist is then applied over
the oxide layer, masked, and exposed. Photoresist removal
exposes certain portions of the oxide layer, which are
themselves removed, revealing the underlying
semiconductor surface. Dopants, the impurities which
produce the desired electrical characteristics in
semiconductor material, are then diffused into these exposed
areas, changing their conductivity and creating
semiconductor junctions, the basis for transistor action.

Adapting resist technology to microelectronics
required many major and minor changes and innovations.
Developing techniques for applying the resist smoothly,
evenly, and quickly to the wafer surface was one area of
research and development, but we will focus here on
improvements in the qualities of the photoresist itself.
Improvements in this case meant higher purity, correct
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Figure 1:

The semiconductor wafer

An oxide layer is formed on the surface of the wafer

A thin layer of photoresist is applied on top of the oxide

The photoresist is exposed through a mask

After development, the exposed areas are dissolved, revealing
selected areas of the oxide layer

Oxide layer is removed in selected areas, revealing selected
portions of the semiconductor surface

7.  Diffusion into the exposed areas (doping)

DW=

o

viscosity, and controlled size and distribution of particulate
matter. These attributes of the photoresist affect the fineness
and accuracy of patterns laid down on the wafer. Impure
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resists introduced unwanted elements into the process;
variable viscosity produced uneven coverage of the surface
and created inaccuracies in the pattern; irregular particulate
size made it difficult to control the fineness of the pattern.
Most research in this area was quite mundane, involving
physical processes such as stirring, filtering, and diluting.
Occasionally, however, scientifically intensive research was
called for, and at such times the specialized expertise of the
resist supplier became necessary.

Fairchild Semiconductor Company depended on
photoresist technology from the start for patterning both
masks and wafers. Gordon Moore recalls that the firm’s
founders were “intrigued with the idea of using
photolithography in successive steps to make transistors.”84
To that end the firm hired James Nall from the DOFL, where
he had originated the use of photoresist technology for
transistor fabrication.85 Working at first with Robert
Noyce, one of Fairchild’s founders, Nall took charge of the
company’s photoresist research.

The main supplier of resists to the industry was the
Eastman Kodak Company, the largest and most advanced
photographic company in the world. Kodak’s research and
development laboratory possessed long-standing expertise in
photochemical technology, and Kodak was a major producer
and purveyor of chemicals to various industries, notably the
graphics industry. It was this involvement that motivated
Kodak's research in resist technology.8¢ From it's position
as the major innovator in photochemical development,
Kodak supplied technical assistance to its customers. When
the electronics industry came into Kodak’s circle, such
technical services were extended to firms both individually
and collectively.87 Kodak sponsored seminars and colloquia
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that provided avenues for the dissemination of important
information concerning resist technology.88

Resist technology became increasingly important at
Fairchild with the introduction of monolithic integrated
circuits in 1960. These devices contained in one piece of
semiconductor material several elements such as transistors
and diodes. Closely packed together, these elements
nonetheless needed to be distinct from each other to function
properly. Meeting these requirements demanded accurate
masking operations to produce sufficiently fine patterns on
the wafers. Complex mask-making, in the words of Gordon
Moore, was “the heart of our technology.”®® Producing
these increasingly fine patterns meant that Fairchild worked
“right on the fringes of what people expected to do with
[resists], so we were always finding the problems.”90
Solving those problems became crucial; resist operations
were central to producing the required patterns on both
masks and wafers.

Beginning in July 1960, FSC’s resist research
operations focused on improving cleanliness. The company
installed positive pressure ventilation hoods which aided
greatly in this effort, and, more importantly, the lab’s
Micrologic Section initiated a search for a resist solvent that
could strip KPR (Kodak Photo Resist, the most commonly
used resist) with less resort to scrubbing than the existing
method. Experimenting with two commercially available
strippers and two home brews, FSC researchers noted some
improvement but found no magic formula. Elevating the
temperature of the solvent bath increased the rate of stripping
and reduced the need for agitation, but the heated solvents
were hazardous and undesirably attacked other parts of the
wafers.?1 A monthly report indicated that other parts of the
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lab were attacking the stripping problem differently: “Solvent
stripping will be compared with removal by pyrolysis or
burning, which is now being investigated by others.”92
Researchers also experimented with other commercially
available strippers and various techniques. They attempted
stripping with ultrasonic agitation (ineffective), high speed
nitrogen jets (effective but unruly), and swabbing with
cotton balls (effective, but harmful to the wafers).93
Chromic acid, researchers found, worked admirably, but it
sometimes left an undesirable stain on the wafer surface.94
By the end of 1960 the “chief obstacles” to improved
resist operation included “scratching and marring of the glass
masks and KPR coated wafers, mask imperfections, dirt and
resulting holes in the KPR coating, uneven coating of the
KPR, lifting of the KPR during etching, [and] inadequate
definition of and variation in the size of the etched
patterns....”%5 Some of these problems simply involved
dirt, a consistent bane of semiconductor manufacture. Such
problems were eventually solved by clean room technology
and other measures. Some problems, however, involved the
resist itself and required intensive analysis. Eastman Kodak
worked closely with FSC to address these problems.
Fairchild and Kodak research projects at times
duplicated each other. For example, production problems in
1961 spurred Fairchild’s research on the thickness and
evenness of resist layers. Defects in masks and wafers,
particularly so-called “pinholes” in the resist layer, reduced
the production yield of usable devices. The Mountain View
production facility and the Palo Alto R&D lab reported
differences in pinhole frequency, despite using similar
processes to apply the resist. Ultimately the variance was
traced to differences in the acceleration of the spinner used in
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applying the coating.?¢ Arthur Engvall, in charge of the lab
section’s photoresist research, reported, “As a result of this
finding the writer has begun a more extensive study of the
effect of KPR thickness on pinholes and definition.”97
Initial findings confirmed that thicker resist layers would
reduce pinholes. Thicker coatings, however, reduced the
attainable pattern definition and so could not be used for
finer pattern features.”8

In this instance the Fairchild researchers took
advantage of Kodak’s complementary knowledge. Engvall
and two other FSC researchers attended a Kodak-sponsored
Symposium on KPR Technology in October of 1961. The
meeting offered “very complete” resist research results
which “for the most part confirmed [Fairchild’s] recent
findings and current thinking” concerning resist
technology.?® Kodak research supported Fairchild’s dirt-
reduction endeavor with the ventilation hoods; this approach
was simpler and surer than keeping entire rooms dust-free.
Likewise Kodak endorsed spinner application and filtering
of KPR, both of which Fairchild had been doing.190 Thus,
Kodak’s expertise added legitimacy to Fairchild’s own
efforts.

Not all Kodak research, of course, duplicated
Fairchild’s, and the FSC researchers obtained “most
interesting and valuable information” on resist development
at the October 1961 symposium.101 Kodak had discovered
that its previously recommended solvent, trichloroethylene,
was too active to produce clean patterns. Instead, Kodak
presented a new development method which showed great
improvements in definition even with thicker resist coatings.
“In view of these advantages,” Engvall wrote, “we intend to
adopt [the new method] for all R&D work” as well as
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recommend it for production after some testing.102 Kodak’s
specialized expertise thus complemented Fairchild’s, and
process improvements stemmed from the combined efforts
of the two firms.103

Kodak’s new development procedure did not,
however, cure all of Fairchild’s photoresist difficulties.
Early in 1962, the mask-making operation suffered from a
KPR scum problem.1%4 A residual film resistant to removal
remained after development of the resist pattern. Kodak
Metal Etch Resist (KMER), a newly developed formula, also
produced a scum layer. Further applications of solvents
produced problems with pinholes and lifting of the resist
layer, exacerbating the difficulties with this process. Engvall
and his crew set about to discover the nature of the scum
layer as well as potential solutions. Possible causes of the
scum included inherent qualities of the resist and some
mechanism involving an interaction between the wafer
surface and the resist.105

After two months’ of trying different solutions,
Fairchild approached Kodak in the late spring of 1962 for
help with the scum problem.1%6  Unfortunately, Kodak was
of little apparent help at this point. Of a Kodak Resist
seminar in San Francisco Fairchild attendees reported
“nothing really new was presented,” and the scum problem
persisted.107 Oddly, the problem was intermittent with no
immediately apparent pattern of occurrence.

In 1963, however, Fairchild researchers
serendipitously noticed a high positive correlation between
the occurrence of scum and the local smog index.108
Pursuing this line of inquiry they soon discovered that
ozone, one of smog’s main ingredients, caused the scum
problem. The temporary solution was to concentrate resist
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work at low smog times, primarily at night. The longer term
solution involved controlling the lab atmosphere to reduce
ozone infiltration.109

Fairchild’s solution of the scum problem, however,
revealed the limits of information flow within the
semiconductor industry. Fairchild did not reveal its
discovery at the next Kodak photoresist seminar despite the
fact that talks at the seminar revealed scum to be “one of the
most troublesome problems some of our competitors have in
photoresist work.”!10 Considering the competitive value of
the ozone discovery, Fairchild “did not volunteer any
information.”!!l In this case, the industry’s habit of
relatively free information exchange succumbed to purely
business considerations.

The same conference, however, brought bad news to
Fairchild: Kodak introduced a new thin resist, KTFR
(Kodak Thin Filtered Resist) that looked like a “loss of
competitive advantage on Fairchild’s part, since we have had
essentially this product available for some time through the
use of our new filtering system.”!!12 The complementary,
cooperative research dynamic in this instance worked against
Fairchild’s interests, though the impact in the end seems to
have been small.

By early 1964, Fairchild’s efforts in photoresist
work seemed to have paid off. Work on scum repression,
resist dispensing systems, spinner design, wafer rack
design, exposure parameters, viscosity control equipment,
pressurized and centrifugal filtering methods, and etching
procedures had all achieved suitable solutions.!!3 Lab
management halted resist research, at least temporarily, but
by November of that year constantly decreasing circuit
element size demanded a re-examination of resist
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technologies. Resists remained a crucial part of device
manufacturing. R&D management saw control of resist
thickness as “the key to maximum resolution of all resist
systems evaluated.”!!4 Kodak symposia summaries no
longer appeared in the lab reports after the Fall of 1964,
though mentions of visits to Kodak continued.!!5 Whether
this indicates that Fairchild people stopped going to the
symposia is not clear. What is certain is that complementary
research efforts marked resist research in a critical period of
technology development. Kodak’s expertise aided Fairchild
in clearing the obstacles to producing the fine and precise
patterns demanded in the fabrication of properly functioning
and economically feasible devices.

Other Materials

Resist technology was not unique in requiring contribution
from diverse and complementary sets of expertise. Materials
that helped protect semiconductor devices from moisture,
light, and other environmental factors which debilitated
device performance were the subject of much research effort.
These materials had to be prevented from interacting
harmfully with the electrical functioning of the devices. In
addition they had to be compatible with the other
manufacturing steps; they needed to withstand a variety of
operating conditions; and they had to remain intact and
working for extended periods of time so as not to limit the
inherently long lifetime of semiconductor devices.
Semiconductor manufacturers looked to epoxy resins, other
plastics, and glasses to provide protection. Standard
materials of these sorts could not, as a rule, meet the
stringent demands of semiconductor use, and as was the
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case with photoresists, their adaptation to new uses
demanded complementary research efforts.

Again, work at Fairchild Semiconductor in the early
1960s illustrates this dynamic. Epoxy, plastic, and glass
encapsulation promised considerable savings over alternative
existing protective methods.!1¢ The heat needed to mold
and harden many glasses and thermoplastics was high
enough to damage the transistor. Epoxies, Fairchild
researchers hoped, would relieve this problem. Gordon
Moore recalled that the firm did “quite bit of work . . . on
epoxy materials for encapsulation.” The firm conducted this
research “principally with other suppliers, but some
internally.”!17 The same was true of glasses and plastics,
and Fairchild R&D Laboratory progress reports bear out this
recollection.

In January 1960, for example, researchers from FSC
R&D Laboratory’s Chemistry Section had “discussions at
Mellon Institute and Diamond Ordnance Fuze Labs,” which
“added to our technology” in, among other areas,
epoxies.!1®8 FSC frequently transmitted its material
evaluations to suppliers in the hopes that more suitable
materials could be supplied.

Process chemicals supply another example of
complementary research. Purity requirements for chemicals
were substantially higher than for other industries. A 1964
survey of chemicals used in the semiconductor industry
stated:

The results of process improvements [by the chemical
industry] have been especially noticeable in lowering the
impurity content in the most commonly used acids, solvents
and reagents. Initially most of these products were selected for

the electronic user from regular production. As usage increased
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and the disadvantage of random contamination became evident,
manufacturing and packaging processes were improved to
produce ultra pure chemicals for the electronics industry.
Today it is possible for a chemical to fail the specifications of
the electronic user and still be pure enough to serve as an
analytical reagent.119

Notwithstanding such progress in the chemical
industry, Fairchild began in 1964 to make its own
hydrochloric acid because commercially available grades
remained too impure for its purpose.!20 The long-standing
search for purity could not keep up with the increasing
demands of the technology.

Conclusion

Advances in materials technology were fundamental
to the semiconductor industry. With a couple of significant
exceptions, progress in this area came from incremental
accomplishments rather than bold leaps. Many of the
materials and processes used by semiconductor
manufacturers were adopted from other industries. Thus
much of the materials technology research consisted of
adaptation processes that by their nature are incremental.
Another consequence of the adoption and adaptation
process, however, lies precisely in the existence of a range
of specialized skills built up in the donor industries. Such
skills generally resided in materials suppliers, who had clear
economic incentives to contribute to the adaptation process.
Especially when suppliers had their own R&D labs, their
contributions to semiconductor manufacturing were both
complementary and significant.
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From a pre-war base of research in industry and
academia, semiconductor materials, mainly germanium and
silicon, found wider electronics applications during the war.
Producing semiconductors was in large part a chemical
process, and chemical firms largely took charge of achieving
the purity needed for electronic devices. Germanium, which
was relatively easy to tame, benefited first from Bell Labs’
zone refining process. Silicon, a more finicky material,
resisted purity improvement until alterations in zone refining
techniques produced device-grade material. This new
technique, float zone refining, undercut the suppliers’
position of chemical firms and soon allowed semiconductor
firms to internalize the production of semiconductor
materials. Their ability to do so, however, rested on the
contributions made by suppliers’ complementary research
efforts.

The photoresist story also supports the importance of
complementary efforts for advancing semiconductor
technology. Initially, photoresist technology for device
manufacture mirrored its earlier use in graphics. As
semiconductor devices became more complex and
demanding, resists needed to become more specialized as
well. It was largely the combined efforts of semiconductor
firms and suppliers, mainly Kodak, that enabled resist
technology to meet the challenges of semiconductor
applications. As with silicon, it appears that when
semiconductor firms gained experience and competence in
resists the supplier’s role diminished.

Cooperation did not always, however, lead to
success. Shockley Semiconductor Laboratories’ crystal
growing efforts with Stanford Research Institute and other
firms failed. Likewise, dendritic growth projects saw little
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long-term success. In both instances, combinations of
insufficient effort, lack of focus, and incompatibility with
predominant industry trends contributed to the failure.
These avenues would probably have remained unexplored,
however, in the absence of cooperative efforts among
complementary sets of expertise.

From the earliest wartime research endeavors
involving many commercial firms and university laboratories
to the later advances that led to workable, reliable, and
efficient production techniques and processes, the
semiconductor industry utilized the diversity of
complementary sets of research and technical skills. The
cases outlined in this chapter are supported by the industry’s
experience with virtually all relevant materials development:
process chemicals, metals, glasses, and various plastics.
Materials technology in the semiconductor industry, then,
was a collective endeavor, one that depended on cooperation
between the owners of complementary sets of knowledge.

Though the examples of complementary diversity
illustrated here are relatively straightforward, the link
between diversity and technical advance is not limited to just
this one dynamic. Differences in approach as to the solution
of the same problem, or competitive diversity, provides
another relationship between diversity and technical advance.
Such diversity in approaches to technological innovation is
particularly important in situations of high uncertainty,
where the pursuit of multiple approaches to a given problem
may increase the chances of finding a solution. However,
intermediate results of diverse approaches may be equally
important to the overall advance of a technology.
Knowledge produced researching one approach may prove
useful in later projects; this may be true even if the original
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project failed functionally or economically.!2! Diversity,
then, is itself complex and may not always appear as
coherent. Its relationship to technical advance differs across
innovation area and type and probably across industries and
technologies. But if variation and selective retention models
of technological development have any power, historians
and others must understand more deeply how diversity
works to advance technologies and under what
circumstances it might serve to retard technical change with
the same enthusiasm with which they explore selection
mechanisms.
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